The December 2022 issue of IEEE Spectrum is here!

Close bar

Until recently, a truly wireless existence was beyond what silicon circuits could offer. The bands of the radio spectrum, such as Wi-Fi, that they could reach were too narrow to connect a high-definition TV to a high-definition DVD player. The chips that could do the job, made with exotic semiconductors, were too expensive for consumer electronics. But in the last two years, silicon circuits finally broke into the 60-gigahertz band, which has been shown to allow data-transfer rates of 5 gigabits per second over a distance of 5 meters.

Sixty-GHz radios, based on silicon or silicon-germanium chips, are expected to be integrated into TVs, set-top boxes, and other media-linked devices starting in 2009. But a new dark-horse candidate has emerged that claims to be able to make cheap 60-GHz technology without using any semiconductor materials at all--silicon or otherwise.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Why the Internet Needs the InterPlanetary File System

Peer-to-peer file sharing would make the Internet far more efficient

12 min read
An illustration of a series
Carl De Torres

When the COVID-19 pandemic erupted in early 2020, the world made an unprecedented shift to remote work. As a precaution, some Internet providers scaled back service levels temporarily, although that probably wasn’t necessary for countries in Asia, Europe, and North America, which were generally able to cope with the surge in demand caused by people teleworking (and binge-watching Netflix). That’s because most of their networks were overprovisioned, with more capacity than they usually need. But in countries without the same level of investment in network infrastructure, the picture was less rosy: Internet service providers (ISPs) in South Africa and Venezuela, for instance, reported significant strain.

But is overprovisioning the only way to ensure resilience? We don’t think so. To understand the alternative approach we’re championing, though, you first need to recall how the Internet works.

Keep Reading ↓Show less