Quantum Holograms Don’t Even Need to “See” Their Subject

New holographic technique could be used for indirect medical imaging and more

2 min read
Within an enclosure, violet colored laser beams are visible along with equipment

A team at Fraunhofer IOF used this setup for its quantum-holography experiments.

Walter Oppel/Fraunhofer IOF

A new quantum-mechanical holography technique can generate holograms of items without scientists ever directly capturing any light from those objects, a new study finds. This novel and surprising discovery already may have biomedical applications.

A hologram is an image that, when illuminated, acts much like a 2D window looking onto a 3D scene. Conventional holography creates holograms by using a laser beam to scan an object and encode its data onto a recording medium such as a film or plate.

Holography can have many uses beyond image displays. For instance, by helping reconstruct an object’s 3D shape and structure, holograms have been called a “progressive revolution in medicine”—with significant uses in many fields such as orthopedics, neurology, and others.

However, the light sensors employed in holography work best with visible wavelengths. Many biomedical applications for holography would benefit from using midinfrared light, which is more difficult to detect, says study senior author Markus Gräfe, a physicist at the Fraunhofer Institute for Applied Optics and Precision Engineering in Jena, Germany.

Now, with the help of the surreal nature of quantum physics, Gräfe and his colleagues have discovered a way to create holograms of items without ever detecting any light from them.

“The light that illuminates the object is never detected,” Gräfe says. “The light that is detected never interacted with the object.”

A key feature of quantum physics is that the universe becomes a fuzzy place at its very smallest levels. For example, atoms and other building blocks of the cosmos can exist in states of flux known as “superpositions,” meaning they can essentially be located in two or more places at once.

One consequence of quantum physics is entanglement, wherein multiple particles are linked and can influence each other instantly regardless of how far apart they are. One way to generate entangled photons is by shining a beam of light at a special so-called “nonlinear crystal” that can split each photon into two lower-energy, longer-wavelength photons (These resulting pairs are not necessarily both the same wavelength.)

In the new study, the researchers used a nonlinear crystal to split a violet laser beam into two beams, one far-red, the other near-infrared. They next used the far-red beam to illuminate a sample—a glass plate engraved with symbols—whereas they used a camera to record the near-infrared light. With the help of entanglement, they could use data from the near-infrared light to reconstruct a hologram based off the details of the object the far-red beam scanned.

“It is possible to carry out imaging and holography by having different light for illumination and detection by exploiting the quantum properties of light,” Gräfe says.

By tinkering with the way in which nonlinear crystals and other components manipulate light, this new “quantum holography” technique could use, say, a midinfrared beam to scan an object while using the partner visible light beam (which can then be detected by conventional, visible-light sensors) to generate the hologram.

“We can even go up to video-rate imaging,” Gräfe says. “The next steps are improving performance and building a scanning microscopic system for midinfrared microscopy with visible light for biomedical imaging.”

The scientists detailed their findings last month in the journal Science Advances.

This article appears in the April 2022 print issue as “Spooky Holography at a Distance.”

The Conversation (4)
Oliver Zuniga13 Feb, 2022
INDV

So they shine two entangled beams of light, and reconstruct what one sees by studying the second. Doesn't this prove that you can use entanglement to send information? Isn't this information then, instantaneously going to the second beam faster than light????

1 Reply
Ashok Deobhakta20 Apr, 2022
SM

Wonderful learning and nicely explained.

Mathew Saint15 Feb, 2022
INDV

When will scientists notest that we can travel in space-time by entering quantum state.

Its better than search for wormholes.In entanglement, information is never lost.Notest that going quantum, is almost like a Pixel entering in the CPU world.Can we entangle past and future particles?

Restoring Hearing With Beams of Light

Gene therapy and optoelectronics could radically upgrade hearing for millions of people

13 min read
A computer graphic shows a gray structure that’s curled like a snail’s shell. A big purple line runs through it. Many clusters of smaller red lines are scattered throughout the curled structure.

Human hearing depends on the cochlea, a snail-shaped structure in the inner ear. A new kind of cochlear implant for people with disabling hearing loss would use beams of light to stimulate the cochlear nerve.

Lakshay Khurana and Daniel Keppeler
Blue

There’s a popular misconception that cochlear implants restore natural hearing. In fact, these marvels of engineering give people a new kind of “electric hearing” that they must learn how to use.

Natural hearing results from vibrations hitting tiny structures called hair cells within the cochlea in the inner ear. A cochlear implant bypasses the damaged or dysfunctional parts of the ear and uses electrodes to directly stimulate the cochlear nerve, which sends signals to the brain. When my hearing-impaired patients have their cochlear implants turned on for the first time, they often report that voices sound flat and robotic and that background noises blur together and drown out voices. Although users can have many sessions with technicians to “tune” and adjust their implants’ settings to make sounds more pleasant and helpful, there’s a limit to what can be achieved with today’s technology.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}