Robots Make Bavarian Breakfast Together

James and Rosie met each other at a robotics lab in Munich. They are now inseparable

2 min read
Robots Make Bavarian Breakfast Together

TUM Rosie robot preparing breakfast

Once upon a time, a charming American robot called James met a striking German bot by the name of Rosie. They liked each other, so they moved in together. Now they spend their days taking long walks in the lab and doing other things that robots do.

James is a PR2 robot, built by U.S. robotics firm Willow Garage, and it traveled to Germany as part of the PR2 Beta Program, an effort to popularize personal robots. At the Technical University Munich (TUM), James was introduced to Rosie, a dual-arm robot with a curvy figure and four eyes [photo above].

Their courtship was at first a bit mechanical, but they soon found many things in common: Both run ROS (Robot Operating System), use Hokuyo laser scanners and Kinect 3D sensors, and have omnidirectional mobile bases.

On a recent spring morning, James and Rosie were seen together cooking the traditional Weisswurst Frühstück, a Bavarian sausage breakfast.

A typical Bavarian Sausage Breakfast

It was a demonstration prepared by researchers at CoTeSys (Cognition for Technical Systems), a Munich-based high-tech cluster. This is how the researchers summarize the experiment:

TUM-Rosie is collecting the sausages, putting them into the pot with boiling water, waiting for them to be cooked and, finally, finding and getting them out of the pot into the serving bowl. [The PR2 robot] TUM-James is meanwhile slicing the french baguette using a regular electric bread slicer and in the end serving the sausages and the bread to the class of highly regarded roboticists. [...]

TUM-James makes use of recent advances in the field of real-time RGB-D sensing using a Kinect sensor for the detection of the bread slicer and the baguette. In the serving task it uses PR2’s haptic capabilities in order to grasp and manipulate the plate.

TUM-Rosie is also using Kinect and perception algorithms from COP [cognitive perception] module in order to calibrate the skimmer and use it as a new tool center point of the arm. Furthermore it learns the 3D models for the pot and the bowls in order to be able to localize them at any arbitrary pose on the table. Lastly, it uses the torque sensors to resolve depth measurement inaccuracies through contact detection with the objects and blob segmentation in order to localize sausages inside the pot.

The couple has a promising life ahead of them, and we look forward to hearing about their future adventures and, hopefully, seeing some baby robots too.

PS: This is not the first romantic meal the robots have together. Last year, the pair prepared a somewhat more mainstream breakfast: pancakes. Guten Appetit!

Thanks, Dejan!

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less