The Ultimate Incubator: The Brave New World of Bionic Babies

Artificial placentas could better the survival odds of premature infants

14 min read
Conceptual Photograph: The Voorhes
Purple

The womb is home to the most complex feat of human biology: the transformation from embryo to fetus to baby. But that magnificent conversion would be impossible without the placenta, the life-giving organ that the developing fetus is tied to via the umbilical cord. Even before a woman knows she's pregnant, the placenta swells in size, poised to serve as the fetus's kidneys and liver until the fetus has its own. The placenta starts to “breathe" for the fetus around 12 weeks in. Over a convoluted surface that grows large enough to cover a horse, fetal blood on one side soaks up oxygen from mom's blood on the other. Her oxygen flows seamlessly into the fetus's beating heart, brain, and limbs, and carbon dioxide from the fetus returns to the mother's blood, to be exhaled in her breath.

Re-creating everything that happens inside the womb belongs firmly in the realm of science fiction. There's still too much that scientists don't know about the early stages of development, when fetal cells grow into organs, limbs, and tissues. But George Mychaliska thinks that creating an artificial version of the placenta, or at least replicating its most important function, is in reach. As a fetal and pediatric surgeon at the University of Michigan's C.S. Mott Children's Hospital, in Ann Arbor, he often sees premature babies who have left the womb too soon. Although modern medicine can save many of them, the chances of survival for extremely small preemies—those younger than 28 weeks, barely in their third trimester—remain slim. Of the survivors, many are left with long-term health problems. Lungs simply aren't designed to breathe until the baby is close to full term, which is currently defined as 39 weeks, and even the gentlest techniques to assist breathing can damage the tissue.

Keep Reading ↓ Show less