The October 2022 issue of IEEE Spectrum is here!

Close bar

Pioneering Astronomy Experiment Begins Beyond the Moon

The radio astronomy experiment will listen for signals from the early universe

3 min read
This series of three photographs was taken during the unfolding of an antenna on the QueQiao satellite, which is located behind the moon at around 450 thousand kilometres from Earth.
This series of three photographs was taken during the unfolding of an antenna on the Queqiao satellite, which is located behind the moon at around 450,000 kilometers from Earth.
Images: Marc Klein Wolt/Radboud University

An unprecedented low-frequency radio astronomy experiment is now underway, 18 months after entering an orbit beyond the far side of the moon.

The Netherlands-China Low Frequency Explorer (NCLE), aboard the Chinese Queqiao relay satellite, is set to begin observations at low frequencies that cannot be made on Earth because of the ionosphere, particularly between 1 to 30 megahertz (MHz).

The first targets will be the sun and Jupiter, which are expected to have strong emissions at low frequencies. But the team also hopes to pick up much weaker signals from the ‘Cosmic Dawn’—when the first stars lit up around 12 billion years ago—and even ultra-faint signals from the preceding Cosmic Dark Ages. Detections would give unprecedented insights into these formative periods of the universe.

The experiment is only now getting underway, with the deployment of NCLE’s three 5-meter-long antennas, as Queqiao (‘Magpie Bridge’) has played a crucial role in China’s Chang’e-4 lunar far side landing mission. 

Queqiao was launched in May 2018 and is now in a halo orbit around the second Earth-Moon Lagrange point about 60,000 to 80,000 kilometers beyond the moon. There, it uses its huge 4.2-meter-diameter parabolic antenna to facilitate communications between terrestrial ground stations and the Chang’e-4 lander and rover on the far side of the moon, which never faces the Earth.

As the Chang’e-4 mission lander and rover have performed well—the duo completed their 12th lunar day of activities on Tuesday and returned valuable science data—secondary objectives can now move ahead. 

With NCLE deployed, Queqiao can switch roles from comms relay to radio telescope when the Chang’e-4 spacecraft power down for the extreme cold of the lunar nights. 

Marc Klein Wolt, leader of the Dutch team at Radboud Radio Lab, says he is very proud of what the team has achieved in three years of hard work, and cannot wait to get hold of the new data. 

The deployment has not been smooth, however, possibly due to the instrument having already spent a year and a half in the vacuum of deep space. While one antenna has been deployed to close to its full length, two others remain stuck at about 2.5 meters. The team will continue to trouble-shoot the issue. 

Even if the problem remains unresolved, there’s a silver lining. The shorter antennas will be more sensitive to the higher-frequency Cosmic Dawn signatures while the team will also be able to seek  weaker signals that have longer wavelengths from the Cosmic Dark Ages with the one fully-deployed antenna. 

Illustration showing the locating of the Queqiao satellite carrying NCLEThis illustration shows the location of the Queqiao satellite carrying the Netherlands-China Low Frequency Explorer.

NCLE is just the first step for low-frequency space-based astronomy. “We need to have more antennas in space to map the Cosmic Dawn and the Dark Ages to see how the hydrogen in the early universe developed and formed structures,” says Wolt.

“We also need to develop interferometry techniques in space, so the next goal will be to have multiple antenna units on small satellites,” he adds.

Radboud could potentially become involved in China’s Chang’e-7, a mid-2020s landing mission which will target the lunar south pole and include an orbiter and relay satellite. “If the Chinese have a space for a payload and we can deliver on time, we’re going to try to do that,” Wolt says.

The Chang’e-4 lander also carries a similar instrument to NCLE, the Low Frequency Spectrometer. It has the extra benefit of operating in a pristine environment for astronomy on the lunar far side, where it’s shielded from electromagnetic interference from the Earth by the moon. 

Together, the two instruments have opened a new window onto the universe.

The Conversation (0)
Two men fix metal rods to a gold-foiled satellite component in a warehouse/clean room environment

Technicians at Northrop Grumman Aerospace Systems facilities in Redondo Beach, Calif., work on a mockup of the JWST spacecraft bus—home of the observatory’s power, flight, data, and communications systems.

NASA

For a deep dive into the engineering behind the James Webb Space Telescope, see our collection of posts here.

When the James Webb Space Telescope (JWST) reveals its first images on 12 July, they will be the by-product of carefully crafted mirrors and scientific instruments. But all of its data-collecting prowess would be moot without the spacecraft’s communications subsystem.

The Webb’s comms aren’t flashy. Rather, the data and communication systems are designed to be incredibly, unquestionably dependable and reliable. And while some aspects of them are relatively new—it’s the first mission to use Ka-band frequencies for such high data rates so far from Earth, for example—above all else, JWST’s comms provide the foundation upon which JWST’s scientific endeavors sit.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}