Close

OSI: The Internet That Wasn’t

How TCP/IP eclipsed the Open Systems Interconnection standards to become the global protocol for computer networking

15 min read
Photo: INRIA
Only Connect: Researcher Hubert Zimmermann (left) explains computer networking to French officials at a meeting in 1974. Zimmermann would later play a key role in the development of the Open Systems Interconnection standards.
Photo: INRIA

If everything had gone according to plan, the Internet as we know it would never have sprung up. That plan, devised 35 years ago, instead would have created a comprehensive set of standards for computer networks called Open Systems Interconnection, or OSI. Its architects were a dedicated group of computer industry representatives in the United Kingdom, France, and the United States who envisioned a complete, open, and multi­layered system that would allow users all over the world to exchange data easily and thereby unleash new possibilities for collaboration and commerce.

For a time, their vision seemed like the right one. Thousands of engineers and policy­makers around the world became involved in the effort to establish OSI standards. They soon had the support of everyone who mattered: computer companies, telephone companies, regulators, national governments, international standards setting agencies, academic researchers, even the U.S. Department of Defense. By the mid-1980s the worldwide adoption of OSI appeared inevitable.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

A Transistor for Sound Points Toward Whole New Electronics

“Topological” acoustic transistor suggests circuits with dissipationless flow of electricity or light

3 min read
Model of a honeycomb lattice

Model of a honeycomb lattice that serves as the basis for a "transistor" of sound waves—whose design suggests new kinds of transistors of light and electricity, made from so-called topological materials. Electrons in a topological transistor, it is suspected, would flow without any resistance.

Hoffman Lab/Harvard SEAS

Potential future transistors that consume far less energy than current devices may rely on exotic materials called "topological insulators" in which electricity flows across only surfaces and edges, with virtually no dissipation of energy. In research that may help pave the way for such electronic topological transistors, scientists at Harvard have now invented and simulated the first acoustic topological transistors, which operate with sound waves instead of electrons.

Topology is the branch of mathematics that explores the nature of shapes independent of deformation. For instance, an object shaped like a doughnut can be deformed into the shape of a mug, so that the doughnut's hole becomes the hole in the cup's handle. However, the object couldn't lose the hole without changing into a fundamentally different shape.

Keep Reading ↓ Show less

Taking Cosmology to the Far Side of the Moon

New Chinese program plans to use satellites in lunar orbit to study faint signals from early universe

3 min read
crescent moon
Darwin Fan/Getty Images

A team of Chinese researchers are planning to use the moon as a shield to detect otherwise hard-to-observe low frequencies of the electromagnetic spectrum and open up a new window on the universe. The Discovering the Sky at the Longest Wavelengths (DSL) mission aims to seek out faint, low-frequency signals from the early cosmos using an array of 10 satellites in lunar orbit. If it launches in 2025 as planned, it will offer one of the very first glimpses of the universe through a new lens.

Nine “sister” spacecraft will make observations of the sky while passing over the far side of the moon, using our 3,474-kilometer-diameter celestial neighbor to block out human-made and other electromagnetic interference. Data collected in this radio-pristine environment will, according to researchers, be gathered by a larger mother spacecraft and transmitted to Earth when the satellites are on the near side of the moon and in view of ground stations.

Keep Reading ↓ Show less