Open Arms

What prosthetic-arm engineering is learning from open source, crowdsourcing, and the video-game industry

13 min read
Opening illustration for this feature article.
Illustration: Holly Lindem

On the first day of 2005, I was living inside the Haditha hydroelectric dam on the Euphrates River in Iraq, four and a half months into a deployment as the engineer officer for 1st Battalion, 23rd Marines, in northern Anbar province. The night before, I had rustily fingerpicked my way through a bluegrass song on the guitar in the New Year’s Eve talent show. I went to bed looking forward to an easy day, a welcome change. I’d been on a long patrol over Christmas—sleeping little, getting shot at. In the morning, I made some of the Starbucks coffee my wife had been sending in her care packages, wrote an e-mail to a friend back home, and headed out to a planning meeting with another officer.

Our meeting was cut short around 9 a.m. when a report came in that one of his riverine boat patrols had been attacked from the shore. I joined the group that went out to respond. We got off the boat and started patrolling the shore on foot, but all we found was evidence of the previous firefight. The Marines began to secure the area.

Keep reading...Show less
{"imageShortcodeIds":[]}

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Golf Robot Learns To Putt Like A Pro

Watch out Tiger Woods, Golfi has a mean short game

4 min read
Golf Robot Learns To Putt Like A Pro

While being able to drive the ball 300 yards might get the fans excited, a solid putting game is often what separates a golf champion from the journeymen. A robot built by German researchers is quickly becoming a master of this short game using a clever combination of classical control engineering and machine learning.

In golf tournaments, players often scout out the greens the day beforehand to think through how they are going to play their shots, says Annika Junker, a doctoral student at Paderborn University in Germany. So she and her colleagues decided to see if giving a robot similar capabilities could help it to sink a putt from anywhere on the green, without assistance from a human.

Keep Reading ↓Show less

These Haptic Microfingers Tickle Pill Bugs’ Toes

Balloon actuators and liquid metal sensors enable tactile human-insect interactions

4 min read
A gif showing a live pill bug on its back wiggling its body and feet as a very small robot hand touches it

All things considered, we humans are kind of big, which is very limiting to how we can comfortably interact with the world. The practical effect of this is that we tend to prioritize things that we can see and touch and otherwise directly experience, even if those things are only a small part of the world in which we live. A recent study conservatively estimates that there are 2.5 million ants for every one human on Earth. And that’s just ants. There are probably something like 7 million different species of terrestrial insects, and humans have only even noticed like 10 percent of them. The result of this disconnect is that when (for example) insect populations around the world start to crater, it takes us much longer to first notice, care, and act.

To give the small scale the attention that it deserves, we need a way of interacting with it. In a paper recently published in Scientific Reports, roboticists from Ritsumeikan University in Japan demonstrate a haptic teleoperation system that connects a human hand on one end with microfingers on the other, letting the user feel what it’s like to give a pill bug a tummy rub.

Keep Reading ↓Show less

NYU Biomedical Engineering Speeds Research from Lab Bench to Bedside

Intensive clinical collaboration is fueling growth of NYU Tandon’s biomedical engineering program

5 min read

This optical tomography device that can be used to recognize and track breast cancer, without the negative effects of previous imaging technology. It uses near-infrared light to shine into breast tissue and measure light attenuation that is caused by the propagation through the affected tissue.

A.H. Hielscher, Clinical Biophotonics Laboratory

This is a sponsored article brought to you by NYU’s Tandon School of Engineering.

When Andreas H. Hielscher, the chair of the biomedical engineering (BME) department at NYU’s Tandon School of Engineering, arrived at his new position, he saw raw potential. NYU Tandon had undergone a meteoric rise in its U.S. News & World Report graduate ranking in recent years, skyrocketing 47 spots since 2009. At the same time, the NYU Grossman School of Medicine had shot from the thirties to the #2 spot in the country for research. The two scientific powerhouses, sitting on opposite banks of the East River, offered Hielscher a unique opportunity: to work at the intersection of engineering and healthcare research, with the unmet clinical needs and clinician feedback from NYU’s world-renowned medical program directly informing new areas of development, exploration, and testing.

Keep Reading ↓Show less