IEEE.orgIEEE Xplore Digital LibraryIEEE StandardsMore Sites
      Sign InJoin IEEE
      Octopus-Inspired Camouflage for Soft Robotics
      Share
      FOR THE TECHNOLOGY INSIDER
      Explore by topic
      AerospaceArtificial IntelligenceBiomedicalComputingConsumer ElectronicsEnergyHistory of TechnologyRoboticsSemiconductorsSensorsTelecommunicationsTransportation
      IEEE Spectrum
      FOR THE TECHNOLOGY INSIDER

      Topics

      AerospaceArtificial IntelligenceBiomedicalComputingConsumer ElectronicsEnergyHistory of TechnologyRoboticsSemiconductorsSensorsTelecommunicationsTransportation

      Sections

      FeaturesNewsOpinionCareersDIYThe Big PictureEngineering Resources

      More

      Special ReportsCollectionsExplainersPodcastsVideosNewslettersTop Programming LanguagesRobots Guide

      For IEEE Members

      Current IssueMagazine ArchiveThe InstituteTI Archive

      For IEEE Members

      Current IssueMagazine ArchiveThe InstituteTI Archive

      IEEE Spectrum

      About UsContact UsReprints & PermissionsAdvertising

      Follow IEEE Spectrum

      Support IEEE Spectrum

      IEEE Spectrum is the flagship publication of the IEEE — the world’s largest professional organization devoted to engineering and applied sciences. Our articles, podcasts, and infographics inform our readers about developments in technology, engineering, and science.
      Join IEEE
      Subscribe
      About IEEEContact & SupportAccessibilityNondiscrimination PolicyTermsIEEE Privacy Policy
      © Copyright 2023 IEEE — All rights reserved. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

      IEEE websites place cookies on your device to give you the best user experience. By using our websites, you agree to the placement of these cookies. To learn more, read our Privacy Policy.

      view privacy policy accept & close

      Enjoy more free content and benefits by creating an account

      Saving articles to read later requires an IEEE Spectrum account

      The Institute content is only available for members

      Downloading full PDF issues is exclusive for IEEE Members

      Access to Spectrum's Digital Edition is exclusive for IEEE Members

      Following topics is a feature exclusive for IEEE Members

      Adding your response to an article requires an IEEE Spectrum account

      Create an account to access more content and features on IEEE Spectrum, including the ability to save articles to read later, download Spectrum Collections, and participate in conversations with readers and editors. For more exclusive content and features, consider Joining IEEE.

      Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, archives, PDF downloads, and other benefits. Learn more →

      CREATE AN ACCOUNTSIGN IN
      JOIN IEEESIGN IN
      Close

      Access Thousands of Articles — Completely Free

      Create an account and get exclusive content and features: Save articles, download collections, and talk to tech insiders — all free! For full access and benefits, join IEEE as a paying member.

      CREATE AN ACCOUNTSIGN IN
      RoboticsTopicTypeVideo

      Octopus-Inspired Camouflage for Soft Robotics

      A new elastic skin morphs to produce different textures

      Amy Nordrum
      Celia Gorman
      18 Oct 2017
      robot hardwaretype:videobioinspired robotssoft robotsmaterialsroboticscamouflage

      There are many reasons to admire the octopus, including its ability to instantly pop up tiny protrusions of various shapes from its skin to match the texture of its background. This technique, combined with other camouflage tricks such as changing its color, allow an octopus to blend into to almost anything—even boats.

      Those protrusions, called dermal papillae, were the bio-inspiration behind a new elastic material that can morph into various shapes, and could provide a shape-shifting surface for soft robots.

      Researchers from Cornell University in New York and the Marine Biological Laboratory in Massachusetts decided to build a material based on muscle groups that control papillae along the surface of an octopus tentacle. The material consists of a fiber mesh that simulates an octopus’s erector muscles, which contract to squeeze a protrusion into shape. They embedded that mesh in concentric rings within a rubber skin, which mimics an octopus’s connective tissue.

      Using a compressed air cylinder, they inflated the rubber skin much like one might blow up a balloon. The fiber mesh held parts of the rubber in place while others expanded out. The team found that, with the right number and spacing of rings, they could form the skin into shapes that resembled a rock and an aloe plant.

      Robert Shepherd, a co-author and assistant professor at Cornell University, says the material could be reformed hundreds of thousands of times without degrading. He and his collaborators recently described their research, funded by the U.S. Army and Air Force, in the journal Science.

      Shepherd thinks their morphable skin could be applied to furniture, or used to create immersive virtual reality experiences in which participants can feel their surroundings. He also says it could someday be worn by robots—maybe even robots that look and move like an octopus.

      The model that his group created is limited by the elasticity of the rubber itself, which can only stretch so far, and the fact that they can’t change the arrangement of the fiber rings once they’re enmeshed in rubber. Each model can therefore only adopt one shape, rather than continuously morph like an octopus’s papillae. But Shephard has ideas for how to make that possible, and to enable the material to change color as well.

      The Conversation (0)

      Trending Stories

      The most-read stories on IEEE Spectrum right now

      BiomedicalTopicTypeSensorsNews

      Wearable Ultrasound Patch Images the Heart in Real-Time

      TopicEnergyTypeSpectrum CollectionsTransportationAnalysis

      Convincing Consumers To Buy EVs

      TopicNewsTypeEnergy

      Smaller, Cheaper Flow Batteries Throw Out Decades-Old Designs

      RoboticsTopicTypeSpecial ReportsVideo

      360 Video: Zoom Over Zanzibar With Tanzania’s Drone Startups

      Come along for the ride as drones soar over the farms and schools of Tanzania

      Evan Ackerman

      Evan Ackerman is a senior editor at IEEE Spectrum. Since 2007, he has written over 6,000 articles on robotics and technology. He has a degree in Martian geology and is excellent at playing bagpipes.

      Michael Koziol

      Michael Koziol is an associate editor at IEEE Spectrum where he covers everything telecommunications. He graduated from Seattle University with bachelor's degrees in English and physics, and earned his master's degree in science journalism from New York University.

      Eliza Strickland

      Eliza Strickland is a senior editor at IEEE Spectrum, where she covers AI, biomedical engineering, and other topics. She holds a master’s degree in journalism from Columbia University.

      09 May 2019
      6:56
      Photo: IEEE Spectrum
      dronesgadgetstype:videoEast Africa dronesmappingTanzaniaAfricadelivery drones360 video

      With 360-degree video, IEEE Spectrum puts you aboard drones that are flying high above the Tanzanian landscape: You’ll ride along as drones soar above farms, towns, and the blue expanse of Lake Victoria. You’ll also meet the local entrepreneurs who are creating a new industry, finding applications for their drones in land surveying and delivery. And you’ll get a close-up view from a bamboo grove as a drone pilot named Bornlove builds a flying machine from bamboo and other materials.

      You can follow the action in a 360-degree video in three ways: 1) Watch on your computer, using your mouse to click and drag on the video; 2) watch on your phone, moving the phone around to change your view; or 3) watch on a VR headset for the full immersive experience.

      Keep Reading ↓Show less
      RoboticsTopicTypeSpecial ReportsVideo

      360 Video: Go on a Mission With Zipline’s Delivery Drones

      Immerse yourself in the action as Zipline catapults its drones into the Rwandan sky

      Evan Ackerman

      Evan Ackerman is a senior editor at IEEE Spectrum. Since 2007, he has written over 6,000 articles on robotics and technology. He has a degree in Martian geology and is excellent at playing bagpipes.

      Michael Koziol

      Michael Koziol is an associate editor at IEEE Spectrum where he covers everything telecommunications. He graduated from Seattle University with bachelor's degrees in English and physics, and earned his master's degree in science journalism from New York University.

      Eliza Strickland

      Eliza Strickland is a senior editor at IEEE Spectrum, where she covers AI, biomedical engineering, and other topics. She holds a master’s degree in journalism from Columbia University.

      06 May 2019
      IEEE Spectrum
      dronestype:videoEast Africa dronesRwandadelivery dronesZipline360 video

      With 360 video, IEEE Spectrum takes you behind the scenes with one of the world’s first drone-delivery companies. Zipline, based in California, is using drones to deliver blood to hospitals throughout Rwanda. At an operations center in Muhanga, you’ll watch as Zipline technicians assemble the modular drones, fill their cargo holds, and launch them via catapult. You’ll see a package float down from the sky above a rural hospital, and you’ll get a closeup look at Zipline’s ingenious method for capturing returning drones.

      You can follow the action in a 360-degree video in three ways: 1) Watch on your computer, using your mouse to click and drag on the video; 2) watch on your phone, moving the phone around to change your view; or 3) watch on a VR headset for the full immersive experience.

      Keep Reading ↓Show less
      DIYTopicTypeVideo

      A Techie’s Tour of New York City

      Here are some NYC attractions that you won’t find in the guidebooks

      Stephen Cass

      Stephen Cass is the special projects editor at IEEE Spectrum. He currently helms Spectrum's Hands On column, and is also responsible for interactive projects such as the Top Programming Languages app. He has a bachelor's degree in experimental physics from Trinity College Dublin.

      17 Oct 2018
      A Techie's Tour Of NYC
      www.youtube.com
      type:videoNew York CityDIYtourismvideosrocketsNikola Teslahistorytechnologyeventshackerspacenew york citynikola teslanyc tourist videonyc tourist guidetech tour nycvideonyc tech tour

      Do your travel plans include New York City? Are you a techie? If the answer to those questions is yes, let IEEE Spectrum be your guide! We've put together a list of some of our favorite places to visit, including important locations in the history of electrotechnology (New York was once the center of the electrical and electronic world) and places where fun and interesting things are happening today. See where Nikola Tesla lived, check out cutting-edge artists working with technology, or take the kids to see an Atlas and Titan rocket.

      All the locations are accessible via the subway, and many are free to visit. If you do visit, take a selfie and post a link in the comments below.

      Keep Reading ↓Show less
      About IEEEContact & SupportAccessibilityNondiscrimination PolicyTermsIEEE Privacy Policy
      © Copyright 2023 IEEE — All rights reserved. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.