The February 2023 issue of IEEE Spectrum is here!

Close bar

Climate Change Is NSF Engineering Alliance’s Top Research Priority

Other focus areas include biology and cybersecurity

3 min read
earth with different circles of climate change options around it

Since its launch in April 2021, the Engineering Research Visioning Alliance has convened a diverse set of experts to explore three areas in which fundamental research could have the most impact: climate change; the nexus of biology and engineering; and securing critical infrastructure against hackers.

To identify priorities for each theme, ERVA—an initiative funded by the U.S. National Science Foundation—holds what are termed visioning events, wherein IEEE members and hundreds of other experts from academia, industry, and nonprofits can conceptualize bold ideas. The results are distilled into reports that identify actionable priorities for engineering research pursuit. Reports from recent visioning events are slated to be released to the public in the next few months.

IEEE is one of more than 20 professional engineering societies that have joined ERVA as affiliate partners.

Research energy storage and greenhouse gas capture solutions

Identifying technologies to address the climate crisis was ERVA’s first theme. The theme was based on results of a survey ERVA conducted last year of the engineering community about what the research priorities should be.

“The resounding answer from the 500 respondents was climate change,” says Dorota Grejner-Brzezinska, EVRA’s principal investigator. She is a vice president for knowledge enterprise at Ohio State University, in Columbus.

During the virtual visioning event in December, experts explored solar and renewable energy, carbon sequestration, water management, and geoengineering. The climate change task force released its report last month.

These are some of the research areas ERVA said should be pursued:

  • Energy storage, transmission, and critical materials. The materials include those that are nanoengineered, ones that could be used for nontraditional energy storage, and those that can extract additional energy from heat cycles.
  • Greenhouse gas capture and elimination. Research priorities included capturing and eliminating methane and nitrous oxide released in agriculture operations.
  • Resilient, energy-efficient, and healthful infrastructure. One identified priority was research to develop low-cost coatings for buildings and roads to reduce heat effects and increase self-cooling.
  • Water, ecosystem, and geoengineering assessments. The report identifies research in creating sensing, measuring, and AI models to analyze the flow of water to ensure its availability during droughts and other disruptive events caused or worsened by climate change.

“The groundwork ERVA has laid out in this report creates a blueprint for funders to invest in,” Grejner-Brzezinska says, “and catalyzes engineering research for a more secure and sustainable world. As agencies and research organizations enact legislation to reduce carbon emissions and bolster clean-energy technologies, engineering is poised to lead with research and development.”

IEEE is developing a strategy to guide the organization’s response to the global threat.

Use biology and engineering to interrupt the transfer of viruses

A virtual visioning event on Leveraging Biology to Power Engineering Impact was held in March. The hope, as explained on the event’s website, is to transform research where biology and engineering intersect: health care and medicine, agriculture, and high tech.

“As agencies and research organizations enact legislation to reduce carbon emissions and bolster clean-energy technologies, engineering is poised to lead with research and development.”

The experts considered research directions in three areas: Use biology to inspire engineers to develop new components, adapt and adopt biological constructs beyond their original function, and create engineering systems and components that improve on biology. An example would be to interrupt the transfer of viruses from one species to another so as to reduce the spread of diseases.

The task force’s report on which research areas to pursue is scheduled to be released next month, according to Grejner-Brzezinska.

Protect infrastructure from hackers

One of today’s main engineering challenges, according to ERVA, is the protection of infrastructure against hackers and other threats. At the in-person visioning event held last month at MIT on the Engineering R&D Solutions for Unhackable Infrastructure theme, researchers discussed gaps in security technologies and looked at how to design trustworthy systems and how to build resilience into interdependent infrastructures.

ERVA describes unhackable as the ability to ensure safety, security, and trust in essential systems and services that society relies on.

The task force examined research themes related to physical infrastructure such as assets and hardware; software and algorithms; and data and communication networks. It also considered new security methods for users, operators, and security administrators to thwart cyberattacks.

Grejner-Brzezinska says the task force’s report will be released in mid-December.

Sustainable transportation networks

Planning has begun for the next visioning event, Sustainable Transportation Networks, to be held virtually on 2 and 3 November. The session is to explore innovative and sustainable transportation modes and the infrastructure networks needed to support them. Some of the areas to be discussed are green construction; longitudinal impact studies; interconnected transportation modes such as rail, marine, and air transport; and transportation equity.

Become an ERVA supporter

ERVA will convene four visioning events each year on broad engineering research themes that have the potential to solve societal challenges, Grejner-Brzezinska says. IEEE members who are experts in the fields can get involved by joining the ERVA Champions, now more than 900 strong. They are among the first to learn about upcoming visioning sessions and about openings to serve on volunteer groups such as thematic task forces, advisory boards, and standing councils. Members can sign up on the ERVA website.

“Becoming a champion is an opportunity to break out of your silos of disciplines and really come together with others in the engineering research community,” Grejner-Brzezinska says. “You can do what engineers do best: solve problems.”

The Conversation (0)

Get unlimited IEEE Spectrum access

Become an IEEE member and get exclusive access to more stories and resources, including our vast article archive and full PDF downloads
Get access to unlimited IEEE Spectrum content
Network with other technology professionals
Establish a professional profile
Create a group to share and collaborate on projects
Discover IEEE events and activities
Join and participate in discussions
Illustration showing an astronaut performing mechanical repairs to a satellite uses two extra mechanical arms that project from a backpack.

Extra limbs, controlled by wearable electrode patches that read and interpret neural signals from the user, could have innumerable uses, such as assisting on spacewalk missions to repair satellites.

Chris Philpot

What could you do with an extra limb? Consider a surgeon performing a delicate operation, one that needs her expertise and steady hands—all three of them. As her two biological hands manipulate surgical instruments, a third robotic limb that’s attached to her torso plays a supporting role. Or picture a construction worker who is thankful for his extra robotic hand as it braces the heavy beam he’s fastening into place with his other two hands. Imagine wearing an exoskeleton that would let you handle multiple objects simultaneously, like Spiderman’s Dr. Octopus. Or contemplate the out-there music a composer could write for a pianist who has 12 fingers to spread across the keyboard.

Such scenarios may seem like science fiction, but recent progress in robotics and neuroscience makes extra robotic limbs conceivable with today’s technology. Our research groups at Imperial College London and the University of Freiburg, in Germany, together with partners in the European project NIMA, are now working to figure out whether such augmentation can be realized in practice to extend human abilities. The main questions we’re tackling involve both neuroscience and neurotechnology: Is the human brain capable of controlling additional body parts as effectively as it controls biological parts? And if so, what neural signals can be used for this control?

Keep Reading ↓Show less