The War Against War Research

Protest comes to the Engineering and Scientific Community. Staff editor
- Charles Horman - checks it out. His findings: some drop out, rather than do war research. Others stay in, but work to change their profession. Adds up to major pressures on the research environment.

While I was in the Bay Area last month to interview a man named Robert Freeman, I revisited the Port of Redwood City, which in 1966 had been the site of demonstrations against the United Technology Corporation’s napalm plant.

There is no sign of the plant there now, except a high mesh fence, still topped with barbed wire.

I had covered the 1966 demonstrations as a journalist. At that time, the thin strip of land which juts out into San Francisco Bay was piled with thousands of glimmering 500 and 750 lb. canisters which were brought in on flatbed trucks, filled with napalm, and loaded onto barges for shipment to Port Chicago, and from there to Vietnam.

Demonstrators had been picketing for weeks in front of the plant. There had been arrests. When I went there, the forklift workers had just been instructed to work overtime to load as many of the canisters as possible onto barges before a mass demonstration scheduled for the coming weekend.

Under those circumstances, I was allowed an interview with one of the engineers for the small work force at the plant. The process, he explained, was much less dangerous than an oil operation. You could drop the canisters. Bang them around—they wouldn’t go off until the fuse was in them.

"If some of the napalm leaks out," he said, "it dries into a solid without releasing fumes or gas. Here’s some."

He bent down and picked up what looked like a flat piece of resin. It was the size of a deflated football. He took out his pocket lighter, flicked it, and held the flame against the edge of the dried napalm.

"There," he said. "You see what I mean? It doesn’t give you any trouble at all."

Of course, he was wrong. Napalm had given quite a bit of trouble to both Dow Chemical and United Technology.

As I listened to the engineer, I found myself wondering if the demonstrations had affected him in any way. Whether he’d been alarmed? Whether he’d been revolted by the long-haired students who had flooded from Stanford and Berkeley to join the odd mix of local housewives, lawyers, and ministers in the demonstration? Whether any part of him had been persuaded? Or made open to persuasion?

So far as I could tell, he hadn’t.

One hundred eighty-three thousand engineers and scientists in the United States expend their working life producing weapons. To a surprising extent they have remained, up to now, insulated from the disaffection with American foreign and defense policy which has shaken large segments of the academic, professional, labor, and black communities.

With the exception of the 1965 defense cutbacks, war-related research and development has been a reasonably secure and rather well-paid profession.

But more important—it is technically fascinating. As Enrico Fermi once remarked to his colleagues while they worked on the first atomic bomb: "Don’t bother me with your conscientious scruples! After all, the thing’s superb physics!"

Compare with Fermi the recent statement on NBC television by former chairman of the Atomic Energy Commission, David E. Lilienthal:

"I have a hunch of conscience every once in a while that I helped to establish some of these big laboratories."

"But I didn’t say they should last forever. Those people talk about technical solutions as ‘beautiful.’ This is a form of art. Well, to hell with that form of art when the lives of the whole country, of the world, are at stake! Let them play with something else!"

Lilienthal’s statement is symptomatic of a crisis in values which has begun to stir the scientific and engineering communities.
On March 4th there was a "work stoppage" among faculty and graduate students at MIT. It was a turning point in the attitudes of the technical community, for it transformed the crisis of values into a political movement.

That movement has begun to change the way technical students and technical workers think about their careers—it may yet change in a noticeable way the life of the engineer I talked with three years ago at the napalm plant in Redwood City.

While reporting this article, I talked with two men whose lives have already been changed—James Morey and Robert Freeman.

Freeman was an engineer for Boeing. Morey designed computer systems for RAND, Systems Development Corporation, and Mite. They worked on defense contracts.

Both were raised as midwestern Republicans. Both enjoyed working on technical problems. After years of work on weapons systems both decided to quit.

Their decisions made no difference—except to them. The Minuteman which Freeman refused to work on has been deployed. Other men are already working on a new generation of missiles to replace it. The bombing system which Morey wouldn’t design is now in use over Vietnam.

Their decision is becoming important because the March 4th work stoppage showed that many other technical men share their doubts. Any political movement is based on shared grievances—and there was plenty of that on March 4th at MIT.

But before considering the form and impact of that movement, I think it is important to consider the human fact in which the movement is based. Men who thought their lives would be fulfilled professionally—in laboratories and shop floors—have taken up a second discipline: politics.

They believe—now—that political action is the only way to make their working and ethical lives match up. Consider Jim Morey and Bob Freeman. After years of questioning, they decided that their only solution was to give up their craft. I asked each of them how they reached that decision.

Here is what Bob Freeman, the engineer, said:

When I started work at Boeing, my wife asked me if I’d have any problem going to work for an outfit that was building missiles—and I dismissed this initially. I really didn’t take it very seriously.

But my years at Boeing were the period when all the fresh scare stuff on atomic weapons was beginning to hit the papers. People were talking about a Test Ban Treaty.

The kids were old enough to say, "Daddy, what are you doing at work?" and it became rather difficult to explain.

The fact was that everyday I went to work to build a missile system—its sole purpose was to destroy something. It didn’t bother me all the time—not consciously—but it did bother me. Finally it bothered me enough that I quit.

When I took this job, I had interviewed at several of the major aircraft outfits—and picked Boeing.

At first, I worked on their Bomarc missile. The manufacture and engineering end of it—not design engineering. I really got to see the whole project, because I was responsible for getting the hardware to vehicles being tested.

If there were engineering problems, I had to get them solved. Same with a material problem. And if there was something wrong with the contract negotiation—I could poke my nose in there too.

So, I got a very different view of a weapons system than most young engineers. It’s awful easy to get stuck in a cubbyhole and never see anything but a tiny piece of the operation. I saw the whole thing.

When my family first moved to Seattle, we just happened to rent a house from a guy whose wife knew John Affolter’s wife. John’s one of those life-long coop instigators. He’s a pacificist and kind of a delightful kook.

One night, they were having a meeting at his house and invited us over. John was the kind of guy who wouldn’t just let you enjoy an evening’s discussion. You had to focus on the large issues of the world—like whether it was going to blow up or not.

John’s solutions were rather anarchistic. You withdrew into a coop and became self-sufficient. So we spent a lot of time arguing about his point of view. Doing that helps you solidify your thinking about what other sorts of things you can do that
wouldn't be quite as stupid as withdrawing into your cocoon.

We met at least four or five people there that we became close friends with over the years we were in Seattle. I suppose that had as much to do with it as anything, though I hate to give John so much credit.

In 1960, I was invited to the organizing meeting of Platform for Peace.

It was supposed to be a flash-in-the-pan campaign for six months to get issues like disarmament, China policy, and the situation in Berlin discussed by political candidates in both parties.

I got quite involved in the economics of disarmament and agreed to become the lobbyist for Platform for Peace at the State Legislature.

At the time I left for Olympia, I was finding the work at Boeing very interesting and very challenging.

They'd been having an awful lot of trouble with their testing and field equipment. Boeing was building test airplanes where you just buy the nuts and bolts from somebody else—they just planned the Bomarc project that way too.

When they got going, though, the situation was just impossible. As they worked the bugs out, the missile's design changed so fast that the subcontractors couldn't keep up.

Farnworth, back in Indiana, was building test equipment—but the test equipment was for a missile which had already been remodeled twenty times.

Boeing really had to start all over again. Somebody had to decide what material, what parts of Bomarc the company should manufacture itself.

They gave my boss that job—and he assigned about ninety different pieces of equipment to me.

It was an incredible scene! No one, at any level, seemed to have the foggiest idea what the plan was. I was just appalled that I'd been assigned to make some kind of sense of this when I barely knew where the different plants were.

But I recognized that no one else knew what to do either—and that gave me a kind of confidence. That assignment for Boeing was actually a factor in why it didn't appall me to go to work on war/peace problems.

Can any individual affect these issues? The rational answer is "Obviously not!" But you take a look around at who is working on the problems of the arms race—and you figure, why not? No one else really knows what to do either, so why not take a try?

Another thing happened. It was clear by the time I took on my legislative stint that the next project I'd work on would be Minuteman.

While I had some difficulty rationalizing Bomarc, it was, nonetheless, a completely defensive missile. It couldn't be used for anything but shooting down bombers. I was troubled by the idea of moving from a strictly defensive missile to one that was clearly going to be used to destroy cities.

The assignment was imminant. The next two or three months.

By the time I left Olympia, I'd decided that I didn't want to work on Minuteman.

It seemed to me that even the work was interesting—and even exciting—at best I'd be building a pile of junk to sit in the ground and never be used for anything, and at worst it would be used to destroy millions of people.

That's why I left Boeing after six years and went to work for the Peace Movement.

And here is what Jim Morey, the systems man, told me:

My doubts started when my wife was in the hospital—during those evenings when I was alone in the house for the first time. I started to read different things. Like Reporter magazine, which then seemed horribly radical to me.

At the time the charge started, I was working very intimately with the commanders of the Air Defense Corps and their staffs.

They had an incredible intensity about the cold war. A number of times—after I began my reading—I would be sitting in the conference room with the command staff-colonels, majors, lieutenant colonels, and some of the technical people who worked with them.

Then suddenly I'd feel I was no longer part of the group. It was a funny kind of thing—almost as if I was pulling back from the conference. Receding in the distance but looking down on it and seeing all these guys going round and round.

I can remember one situation when I was rushing from Lincoln Laboratory to the Air Defense Sector—a big blockhouse on McGuire Air Force Base in New Jersey, I got stuck. There was snow. I started oscillating between a feeling of great strain—I had to be there, the commander and his staff were waiting.

But then there was this other thought. What the hell is this anyway? Why don't I just turn around and go back home and let the commander and his staff sit and play their game?

I had an opportunity very few people have. There were hundreds of guys, working nights and weekends on that system, who never had direct contact with the guys for whom the system was designed.

When you finally got to the guy on top of that $5 million system—and examine his attitudes and what life means to him—it's an eye opener. My confrontation with the top military command—the way they lived and thought—had a lot to do with why I quit.

Not long after I finished work on SAGE, I began research with computers for the Air Force. The techniques were quite general and could be used, say, in planning the operations of a large hospital or municipal government. There were some very exciting conceptual problems involving new ways to use computers.

Then suddenly the Pentagon decided that we seemed to be making progress, they were encouraged—and the word came down:

"We would like you now to apply the techniques you've been developing. Specifically, we'd like you to use them for planning operational bombing. We'd like you to assume Southeast Asia as the area and Vietnam as the target."

We had a team relationship at Mitre Corporation. They were people I liked and respected as professionals—particularly the people above me. I was skillful enough to understand the way you behave in order to keep up good professional relations. As a result, the funny thing is that until my doubts reached the very point that I wrote the letter of resignation to the technical vice president of the company, nobody had the slightest idea that I had any reservations whatsoever about what I was doing.

Afterward, I heard a much better-known man talk in public:

On March 4th, George Wald, Harvard biologist and Nobel Prize winner, stood bracketed by news cameras on the stage of Kresge auditorium at MIT.

The 1200-seat hall was already packed with graduate students and their professors. Chemical and electrical engineers. Physicists and micro-biologists—
many of whom had cut classes and labs to be there. Scattered in the audience were undergraduates from Harvard and Boston University with freaky hair and owls-nest beards.

Jerome Weisner, MIT's provost and former science advisor to two Presidents of the United States, sat near the front, a slight smile on his face as he watched Wald at the podium.

Wald lowered his voice to say, "I think by now you've all heard the words of Senator Richard Russell of Georgia as he finished a speech in the Senate by saying, 'If we start over with another Adam and Eve, I want them to be American.'"

A snort of laughter from the audience.

"And I want them on this continent and not in Europe."

"That is a Senator of these United States making a patriotic speech. Well, here's a Nobel laureate who looks on those words as criminal insanity."

Thinking back to March 4th—now more than two months old—the work stoppage changed a number of things. It wasn't a debate. It certainly wasn't a strike. But it was the first time when scientists and engineers made their private doubts public—and political.

I talked to a great many people that day and on the several days that followed. Graduate students, senior scientists, engineers from the Route 128 corporations.

They had been at Kreege auditorium and had many very different opinions about what they wanted the day—and the new movement—to accomplish. "Redress a balance. Partial reconversion. Democratize defense policy." Those were some of the phrases I heard. Just about every shade of opinion was in the audience—from far right to a young man who'd come all the way from England to demand an end to American capitalist imperialism.

Most of the audience agreed with the protest. Most, however, also came without specific programs. They came to show their concern—and find out how many others would show up.

So heads were counted—and there were lots of them. Now the movement has gone into the more difficult stage of reaching an agreement on program and tactics.

The size of the work stoppage is important. For several months before March 4th, MIT organizers from the faculty and graduate schools had urged scientists and engineers to break off their research to that day to discuss the social implications of their work. Many did.

Although the MIT work stoppage was specifically aimed at faculty and graduate students, there was significant attendance from private corporations in the Boston area.

Workers from the companies—which included Bolt, Beranek, and Newman; Allied Research; Polaroid; and professional staff from Lincoln and Instrumentation Labs—signed a list so they could be contacted for further discussion and action.

In addition, the protest had spread. By March 4th, to thirty other campuses. Some of those campuses, like Berkeley, Wisconsin, and Columbia were already attuned to protest; but others, like Brooklyn Polytechnic, were—significantly—technical schools which up to then had not been touched by the student movement.

Most of those who came to Kreege were concerned, basically, with changing the priorities of national spending on science and technology. During the day they discussed how to change those priorities. How to reconvert university and corporate laboratories from rocket research to air pollution. How to divert billions of dollars from defense to the problems of the city.

The one day work stoppage, of course, had no impact—and was not intended—to on the production of military hardware. The point was that it represented a dramatic shift in a protest movement, which up to now has left engineers and scientists largely unmoved.

Take the demonstrations against Dow Chemical. In one year there were over a hundred sit-ins against Dow recruiters. Dow representative W. L. Hendershot found himself locked in a room at the University of Wisconsin so long that from then on he carried emergency sandwiches in his attaché case.

"This is a lousy goddam stinking mess," President Herbert D. Doan burst out to reporters.

Nevertheless Dow officials still knew that once their recruiters slipped past the English majors
and social science majors picketing outside, the chemical engineers would be waiting inside, eager as ever to sign up.

"I don't think we had any situation where a bonafide prospect failed to show up for an interview," said Dean Wakefield, eastern PR director for Dow Chemical. "It seems to me that the people who get involved in campus demonstrations are the ones who haven't decided on a career. Engineers are single-minded. They've got their lives mapped out."

A sociologist with a major international corporation—who understandably declined attribution—now agrees. "There will be major confrontations within the companies themselves. Draftsmen will literally rise from their drafting tables, waving their T squares. The confrontations will touch on specific issues like employees' rights—and on major political questions. These confrontations between management and professionals will take place within five years."

"The first sign is the work stoppage at MIT."

Can scientists and engineers really become political activists? One answer is that many of them already have.

In the January issue of Technology Review, Bernard T. Feld, Professor of Physics at MIT, reported that French scientists and engineers had lagged behind the student/worker uprising at first but that ultimately they followed the same course.

"On the day of my arrival in Paris," writes Professor Feld, "one laboratory, the C.E.A. or Centre d'Energie Atomique, thirty kilometers south of Paris at Saclay, decided to go on strike indefinitely."

All would stay in the plant, including research assistants, technicians, and scientists. Their reasons were in part sympathy with the students and the other striking workers, partly because it was what everyone else was doing, and partly because of the dissatisfaction among younger research workers and technicians with the very top-heavy decision-making structure of the C.E.A."

Feld also reported that a Laboratory Assembly had been established at the Ecole Polytechnique in Paris. An ad hoc body representing all levels in the lab was "charged with determining the laboratory's future structure. I was told," he writes, "that democracy was now being substituted for authority, and that younger people at all levels would take part in the decision-making process."

Now that a movement has started in the United States, which way will it go, and what are its issues?

The issue closest to the MIT community was the Institute's own war research. In 1966, an MIT attorney had quite accurately called the Institute "a scientific arsenal of democracy." He meant the term as innocent flattery, but to the students and faculty who were disenchanted with American foreign policy the words became increasingly sinister.

MIT, in fact, is the country's tenth largest defense contractor. In 1967, the Institute's total research budget was $173 million. Of that, $111 million came from the Department of Defense.

Much of the Defense money goes into unclassified basic research, but MIT's off-campus Lincoln and Instrumentation Labs have done extensive classified work on a variety of weapons systems. $64 million of Lincoln Labs' $65 million budget comes from DOD; and 50% of the work done by professors, graduate students, and technical staff is classified.

"I don't understand what is wrong with the fact that DOD is able to get money to support really basic research," says Carl Floc, director of on-campus research and Military Coordinator of the Institute. "We would really be in a bad way if the DOD was not able to spend money for really basic research, because this is the principal government support that we have."

The March 4th organizers disagreed. "The Defense Department should get out of funding basic research that it has no business funding," said Ira Rubenzahl, a graduate student in physics. "We don't think that the Institute should get rid of Lincoln Labs. They should tell the government, 'Sure, we'll run Lincoln Labs for you but only do projects that do not involve classified research.'"

But the movement which is beginning to emerge is not simply a protest against war, and it will begin to affect corporations and universities in many ways besides increasing pressure for civilian reconversion.

In fact, there were really two movements at the work-stoppage. The first—dominated by older scientists—is crisis oriented. Stop the
ABM. End the war in Vietnam. Cut the defense budget.

The other movement—dominated by young graduate students—includes those issues but has longer-range implications. Influenced by the activist Students for a Democratic Society and by the Federal Antipoverty Program, it aims at increasing “participatory democracy” and redistributing decision-making power. It is this movement that the corporation sociologist has in mind when he refers to “draftsmen waving their T squares” in protest. And it is this part of the movement which follows most closely the model of the French laboratory strike. It’s not there yet—but the organizers are looking in that direction.

The March 4th work stoppage was planned and run by the senior scientists. For them it was important to present good representatives of science who could sway the government and the scientific establishment through argument and prestige.

Their success was impressive.

Sponsors of the program included Victor Weisskopf, Institute Professor, Head of the Physics Department, and former head of CERN, the European atomic laboratory. Murray Eden and Mildred S. Dresselhaus, Professors of Electrical Engineering. Irwin Oppenheim, Professor of Chemistry. Boris Magasanik, Professor of Microbiology and head of the Biology Department. Herman Feshbach, Professor of Physics and Director of the Center for Theoretical Physics, and many other distinguished professors.

Hans Bethe spoke against the antiballistic missile system, as did Congresswoman Brown of California.

Panel discussions were held and statements made.

Ronald Probst, Professor of Mechanical Engineering at MIT, related his own experience in converting a lab to civilian uses. Three years before, he had decided to reorient his fluid mechanics lab from reentry physics. At that time—with a half-dozen professors, twenty graduate students, and a $300,000 annual budget—the lab’s work was 100% defense.

Today, converted to studying desalinization, pollution, and biomedical problems, the lab does only 35% defense work. But it has grown to ten professors, thirty graduate students, and a budget of $600,000 a year.

So it’s possible to see which way the first movement—of senior scientists—is going. They’ll testify before Congress. They’ll speak to local and national groups and take out ads in the New York Times. They’ll follow, roughly, the model for scientific dissent set in “the revolt of the atomic scientists” after the end of World War II, when scientists lobbied for civilian control of the bomb. Persuade the Congress, persuade the voters, tally your success at the ballot box.

Odds are they’ll win a few, lose a few. Don’t build ABM. Build MIRV. Get out of Vietnam. Get into Peru.

The second, more radical movement? It’s more difficult to know where they’re going. On March 4th they didn’t have time to find out themselves. Only two hours were allotted to the graduate students. During most of that time, the meeting was thrown open for discussion.

At that time, the tone became more militant.

“I suggest we ask people in the MIT student body to pledge that we will not engage in defense research,” said Vic Elias, an MIT junior in physics and history. “This would be along the lines of the ‘Hell No, We Won’t Go’ pledge which was so successful last year. The idea is to make every student have to take a stand. And realize that it’s something that can’t be postponed until tomorrow. You have to decide now.”
Many of the young organizers come from the civil rights and student movement of the 60's—and the new movement strongly reflects their influence.

The demonstrations against the Vietnam War began—like the "revolt of the atomic scientists"—with petitions and teach-ins but—particularly after the 1967 obstruction of the Oakland Draft Center—had moved into collective resistance.

"My reaction to war research is a strong personal thing," said one student on March 4th, "I want to stop it. I want to stop it right now. There's been no real confrontation with war research here today. We ought to get people together, go over to the instrumentation labs and stop them from working."

It's unclear at this point what role confrontation politics might play. If there are more demonstrations however—inside or outside defense contractors—it will be as a means to interest and organize people, not an end in itself.

The SDS demonstrations against Stanford Research Institute, for example, had mixed results inside the institute. Very few SRI researchers were persuaded by the SDS analysis—which stressed the interconnections of Stanford trustees and defense corporations—they didn't see it really meant anything—but, on the other hand, the period after the demonstrations was the first time there was widespread discussion within the Institute of the Vietnam War and SRI's extensive defense contracts.

Other issues include—not just a cutback on specific defense projects—but a kind of "shop democracy." Workers of all sorts—including elite workers like scientists and engineers—would have increased control over the decisions which affect their lives.

This control is thought of as being exercised not just at the ballot box but in laboratories and on the shop floor.

The people who work in companies, the students in the movement believe, will want more say in what they make and how they make it. They will be concerned with the social uses to which their labor is put.

The movement is firmly established in colleges and high schools. The real question now is whether the present students can hold their political organizations together and, thus, have a real impact on their various professions or whether the organizations will fall apart, leaving their former members isolated, distraught and, occasionally, dropping out.

If it does hold together, this movement will, in the next few years, pose a very real challenge to American business and the way it's managed. During these years, many students who consider themselves radicals will enter the corporate world. They will be trying to discover whether present managers can play some collaborative role in the changes they believe necessary. Whether new—and more permissive—theories of management can be made to work—or whether the direction of the movement must be ultimately insurgent.
Comment the Reporters:

The scene in the photograph is Kresge auditorium at MIT—the day of the faculty-student “work stoppage.”

Staff editor Charles Horman (holding microphone), the author of this article, chats with Josef-Miot-Mroz, founder and possibly sole member of Polish Freedom Fighters U.S.A.

Just before this picture was taken, Miot-Mroz had denounced a panel of professors as “Commie Jews who ought to get more sense in their heads.” Exciting as he was, Miot-Mroz never made it to the final draft of the article; but he was one of the dozens of people—on both coasts—radicals, researchers, and right-wingers with whom Horman talked in preparing his article.

Horman comes to Innovation from a background of newspaper and TV-documentary writing.

The man who snapped the photo is senior editor Evan Herbert, fresh from seven years on International Science and Technology. Herbert, shown in the photo waiting out bad flying weather, did get there March 4 with camera and tape recorder to help cover the event. He also helped introduce Horman to the highways and byways of the scientific establishment.

Concerning the March 4th movement, Evan had his own opinion: I saw the things which upset the protesters from the other side of a slight generation gap. I was glad to see the coming generation of scientists and engineers show what appeared to be some social conscience. But I felt they went to great lengths to show what they didn’t want—and they missed some good bets on finding the leverage to accomplish what they did want.

They should have talked to Jack Ruina, once director of the Advanced Research Projects Agency and President of the Institute for Defense Analysis, who was about to testify to Congress about the ABM. I know Ruina, now MIT’s vice president for Special Laboratories, and know him to be sensitive to new ideas. He had made himself available at lunch that day for an open discussion of the ABM in the student center next door to Kresge Auditorium, but only a dozen people showed up.

My friends at ARPA say that a lot of the basic research now underway simply wouldn’t get done without support for a critical level of manpower and money—which DOD understands and provides, especially when other government departments do not.

I was troubled that on Saturday, March 6, when there was a day of constructive discussion about how to use technology in medicine or urban technology, only a few hundred turned out, and less to listen than to continue to protest. If the students want to have a real effect, they should come up with positive plans to present instead of just talking down what’s happening now.

For anyone interested in following up on March 4th, Horman suggests contacting the Union of Concerned Scientists or Science Action Coordinating Committee at MIT, or TASC in Palo Alto, California. Also available is a film called “But What Do We Do?” which was used extensively to start discussions during the work stoppage at MIT.

Here’s a quote from it: “I think it’s accurate to say that Vietnam made a pacifist out of me. Still, it was very difficult for me to quit my job. It was professionally rewarding and it pays very well.”

Speaking is a former research analyst at Stanford Research Institute who quit when he was assigned to work on electronic gear to be used on American bombers in Vietnam.

The twenty-minute film was made by Leonard Henny, who also quit SRI. It reconstructs the research analyst’s decision to quit—he has since joined VISTA—and includes sequences of the Stanford SDS demonstrations against SRI. Horman feels that, although flawed in places as a film, it remains an important social document and well worth seeing and talking about. (Prints are available through the director: Leonard Henny, 3800 Scott Street, San Francisco, California 94123.)