Nothing Can Keep This Drone Down

It uses elytra, a beetle-inspired set of wings, to self-right itself

2 min read
self righting drone

When life knocks you down, you’ve got to get back up. Ladybugs take this advice seriously in the most literal sense. If caught on their backs, the insects are able to use their tough exterior wings, called elytra (of late made famous in the game Minecraft), to self-right themselves in just a fraction of a second.

Inspired by this approach, researchers have created self-righting drones with artificial elytra. Simulations and experiments show that the artificial elytra can not only help salvage fixed-wing drones from compromising positions, but also improve the aerodynamics of the vehicles during flight. The results are described in a study published July 9 in IEEE Robotics and Automation Letters.

Charalampos Vourtsis is a doctoral assistant at the Laboratory of Intelligent Systems, Ecole Polytechnique Federale de Lausanne in Switzerland who co-created the new design. He notes that beetles, including ladybugs, have existed for tens of millions of years. “Over that time, they have developed several survival mechanisms that we found to be a source of inspiration for applications in modern robotics,” he says.

His team was particularly intrigued by beetles’ elytra, which for ladybugs are their famous black-spotted, red exterior wing. Underneath the elytra is the hind wing, the semi-transparent appendage that’s actually used for flight.

When stuck on their backs, ladybugs use their elytra to stabilize themselves, and then thrust their legs or hind wings in order to pitch over and self-right. Vourtsis’ team designed Micro Aerial Vehicles (MAVs) that use a similar technique, but with actuators to provide the self-righting force. “Similar to the insect, the artificial elytra feature degrees of freedom that allow them to reorient the vehicle if it flips over or lands upside down,” explains Vourtsis.

The researchers created and tested artificial elytra of different lengths (11, 14 and 17 centimeters) and torques to determine the most effective combination for self-righting a fixed-wing drone. While torque had little impact on performance, the length of elytra was found to be influential.

On a flat, hard surface, the shorter elytra lengths yielded mixed results. However, the longer length was associated with a perfect success rate. The longer elytra were then tested on different inclines of 10°, 20° and 30°, and at different orientations. The drones used the elytra to self-right themselves in all scenarios, except for one position at the steepest incline.  

The design was also tested on seven different terrains: pavement, course sand, fine sand, rocks, shells, wood chips and grass. The drones were able to self-right with a perfect success rate across all terrains, with the exception of grass and fine sand. Vourtsis notes that the current design was made from widely available materials and a simple scale model of the beetle’s elytra—but further optimization may help the drones self-right on these more difficult terrains.

As an added bonus, the elytra were found to add non-negligible lift during flight, which offsets their weight.  

Vourtsis says his team hopes to benefit from other design features of the beetles’ elytra. “We are currently investigating elytra for protecting folding wings when the drone moves on the ground among bushes, stones, and other obstacles, just like beetles do,” explains Vourtsis. “That would enable drones to fly long distances with large, unfolded wings, and safely land and locomote in a compact format in narrow spaces.”

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less