The February 2023 issue of IEEE Spectrum is here!

Close bar

NIST Reveals Reliability Problems with Carbon Nanotubes in Electronics

While research indicates that CNTs use as interconnects in logic memory devices may be compromised, hope remains for other application areas

2 min read
NIST Reveals Reliability Problems with Carbon Nanotubes in Electronics

Poor old carbon nanotubes. CNTs have long been heralded as the new wonder material, especially in electronics applications where their charge-carrier mobility was able to outperform silicon—according to some estimates by a factor of 10—but researchers have struggled to find a satisfactory proposal for getting them into some kind of ordered array

While researchers have continued for the last 20 years to push CNTs beyond a single transistor or attempted to use their propensity for forming a rat’s nest as a strength rather than a weakness, they have faced the unexpected problem over the last decade of their toxicological issues

First, the research hasn’t progressed quite as hoped. Then, environmental, health, and safety concerns presented an entirely new challenge. But—as though those two weren’t enough—along comes a new wonder material: graphene.

As I said, poor old CNTs. So it should come as no surprise in the tale of woe that has followed CNTs that NIST should report CNTs have a major reliability issue in electronics.

The research was presented in a paper at the recent IEEE Nano 2011 in Portland, Oregon. From the NIST Web site:

“…NIST researchers fabricated and tested numerous nanotube interconnects between metal electrodes. NIST test results, described at a conference this week, show that nanotubes can sustain extremely high current densities (tens to hundreds of times larger than that in a typical semiconductor circuit) for several hours but slowly degrade under constant current. Of greater concern, the metal electrodes fail—the edges recede and clump—when currents rise above a certain threshold. The circuits failed in about 40 hours.”

One of the authors of the paper, Mark Strus, a NIST postdoctoral researcher, suggested that while this research may spell the end for CNTs as “the replacement for copper in logic or memory devices,” there still remained the possibility of using the material for “interconnects for flexible electronic displays or photovoltaics.”

That is, of course, when just looking at CNTs’ use as an interconnect. The field of research for CNTs has become so broad over the past 20 years that they are being tested for use in fields as divergent as electrodes in lithium-ion batteries to improving medical imaging.

We haven’t yet reached the point of singing CNTs swan song.

The Conversation (0)

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.

Avicena

If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less