The December 2022 issue of IEEE Spectrum is here!

Close bar

New Gamma-Ray Space Telescope to Launch

Set to launch on 3 June, NASA's Gamma-ray Large Area Space Telescope will explore the universe's most powerful phenomena

3 min read

29 May 2008—Next week, NASA will launch a new US $690 million gamma-ray space telescope, designed to explore the most energetic regions of the universe, where photons some billion times as energetic as visible light originate. The Gamma-ray Large Area Space Telescope (GLAST), a 4.3-metric-ton observatory, is set for launch on 3 June. A joint effort of NASA and the U.S. Department of Energy, the project also has electronic hardware contributions from international partners in France, Italy, Japan, and Sweden. Because Earth’s atmosphere provides a natural shield against gamma rays, GLAST must be put into low Earth orbit to observe them.

GLAST’s main mission during its expected five-year life is the study of gamma-ray bursts from stars collapsing to form black holes and other celestial sources. These brief events, lasting from a few milliseconds to several minutes, radiate the most energetic form of light in the universe—8000 electron volts to more than 300 billion electron volts. GLAST will be 30 times as sensitive at detecting these elusive bursts than its predecessor, the NASA Compton Gamma Ray Observatory, which operated from 1991 to 1999.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Economics Drives Ray-Gun Resurgence

Laser weapons, cheaper by the shot, should work well against drones and cruise missiles

4 min read
In an artist’s rendering, a truck is shown with five sets of wheels—two sets for the cab, the rest for the trailer—and a box on the top of the trailer, from which a red ray is projected on an angle, upward, ending in the silhouette of an airplane, which is being destroyed

Lockheed Martin's laser packs up to 300 kilowatts—enough to fry a drone or a plane.

Lockheed Martin

The technical challenge of missile defense has been compared with that of hitting a bullet with a bullet. Then there is the still tougher economic challenge of using an expensive interceptor to kill a cheaper target—like hitting a lead bullet with a golden one.

Maybe trouble and money could be saved by shooting down such targets with a laser. Once the system was designed, built, and paid for, the cost per shot would be low. Such considerations led planners at the Pentagon to seek a solution from Lockheed Martin, which has just delivered a 300-kilowatt laser to the U.S. Army. The new weapon combines the output of a large bundle of fiber lasers of varying frequencies to form a single beam of white light. This laser has been undergoing tests in the lab, and it should see its first field trials sometime in 2023. General Atomics, a military contractor in San Diego, is also developing a laser of this power for the Army based on what’s known as the distributed-gain design, which has a single aperture.

Keep Reading ↓Show less