New Brain-Machine Interface Reactivates Monkey's Paralyzed Muscles

A monkey learned to use the output of just one brain cell to move its wrist

3 min read

20 October 2008—For years, doctors have treated patients suffering from life-threatening heart blockages by adding new blood vessels that reroute blood around arterial traffic snarls. Researchers have been working on methods for doing an electronic bypass around a damaged spine with the aim of restoring movement to paralyzed limbs.

Though it will be years before spinal bypass surgery reaches even the clinical-experiment stage, researchers at the University of Washington (UW) and the Washington National Primate Research Center, both in Seattle, have figured out a way to get macaque monkeys in their lab to manipulate temporarily paralyzed muscles in their arms using brain-controlled electrical stimulation. In research reported last week in Nature , they describe what happened when they attached electrodes to neurons in a monkey’s motor cortex—the part of the brain that controls voluntary movement—and used fairly simple algorithms to translate activity in these cortical cells into electrical signals that tell muscles when, how much, and how forcefully to contract.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

This Implant Turns Brain Waves Into Words

A brain-computer interface deciphers commands intended for the vocal tract

10 min read
A man using an interface, looking at a screen with words on it.

A paralyzed man who hasn’t spoken in 15 years uses a brain-computer interface that decodes his intended speech, one word at a time.

University of California, San Francisco
Blue

A computer screen shows the question “Would you like some water?” Underneath, three dots blink, followed by words that appear, one at a time: “No I am not thirsty.”

It was brain activity that made those words materialize—the brain of a man who has not spoken for more than 15 years, ever since a stroke damaged the connection between his brain and the rest of his body, leaving him mostly paralyzed. He has used many other technologies to communicate; most recently, he used a pointer attached to his baseball cap to tap out words on a touchscreen, a method that was effective but slow. He volunteered for my research group’s clinical trial at the University of California, San Francisco in hopes of pioneering a faster method. So far, he has used the brain-to-text system only during research sessions, but he wants to help develop the technology into something that people like himself could use in their everyday lives.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}