The July 2022 issue of IEEE Spectrum is here!

Close bar

NASA’s Lunar Space Station Is a Great/Terrible Idea

NASA’s orbiting Lunar Gateway is either essential for a moon landing or a boondoggle in the making

9 min read
Illustration of space vehicle orbiting the moon.
Illustration: John MacNeill

When astronauts first landed on the moon a half century ago, they went there in a single shot: A Saturn V rocket launched the Apollo command and service module and the lunar lander, which entered into a low orbit around the moon. The lander then detached and descended to the surface. After 22 hours in the moondust, the Apollo 11 astronauts climbed into the lander’s ascent stage and returned to the command module for the trip back to Earth.

NASA’s current plan for sending astronauts back to the moon, which may happen as soon as 2024, goes a little differently. A series of commercial rockets will first launch the components of a small space station, which will self-assemble in high lunar orbit. Then another rocket will send up an unoccupied lunar lander. Finally, a giant Space Launch System (SLS) rocket will launch an Orion spacecraft (which looks a lot like an Apollo command module), with astronauts inside. Orion will dock with the space station, and some of the astronauts will transfer to the waiting lander. Finally, the astronauts will descend to the lunar surface. After their sortie on the moon, they’ll return to the orbital station, where the crew will board Orion for the trip home.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

When Gamers Get Nasty

Researchers grapple with subjectivity as they develop aIgorithms to detect toxicity in online gaming

2 min read
A man wearing a headset is seen in a dark room playing video games
Getty Images

Online gaming is a chance for players to come together, socialize and enjoy some friendly competition. Unfortunately, this enjoyable activity can be hindered by abusive language and toxicity, negatively impacting the gaming experience and causing psychological harm. Gendered and racial toxicity, in particular, are all too common in online gaming.

To combat this issue, various groups of researchers have been developing AI models that can detect toxic behavior in real-time as people play. One group recently developed a new model, which is described in a study published May 23 in IEEE Transactions on Games. While the model can detect toxicity with a fair amount of accuracy, its development demonstrates just how challenging it can be to determine what is considered toxic—a subjective matter.

Keep Reading ↓Show less

Quantum Computing for Dummies

New guide helps beginners run quantum algorithms on IBM's quantum computers over the cloud

3 min read
An image of the inside of an IBM quantum computer.
IBM

Quantum computers may one day rapidly find solutions to problems no regular computer might ever hope to solve, but there are vanishingly few quantum programmers when compared with the number of conventional programmers in the world. Now a new beginner's guide aims to walk would-be quantum programmers through the implementation of quantum algorithms over the cloud on IBM's publicly available quantum computers.

Whereas classical computers switch transistors either on or off to symbolize data as ones or zeroes, quantum computers use quantum bits, or "qubits," which because of the peculiar nature of quantum physics can exist in a state called superposition where they are both 1 and 0 at the same time. This essentially lets each qubit perform two calculations at once. The more qubits are quantum-mechanically linked, or entangled (see our explainer), within a quantum computer, the greater its computational power can grow, in an exponential fashion.

Keep Reading ↓Show less

Take the Lead on Satellite Design Using Digital Engineering

Learn how to accelerate your satellite design process and reduce risk and costs with model-based engineering methods

1 min read
Keysight
Keysight

Win the race to design and deploy satellite technologies and systems. Learn how new digital engineering techniques can accelerate development and reduce your risk and costs. Download this free whitepaper now!

Our white paper covers:

Keep Reading ↓Show less