The December 2022 issue of IEEE Spectrum is here!

Close bar

NASA Funds Robotic Tumbling Cubes for Space Exploration

How does NASA want to explore asteroids? Cubes. Lots of cubes

2 min read
NASA Funds Robotic Tumbling Cubes for Space Exploration

NASA wants to go to an asteroid. Great! And once NASA gets there, then what? Exploration, of course, since that's what NASA does. But the microgravity (or minigravity?) environment is a challenging one to get around in. There's likely not enough gravity to use wheels or treads to drive across an asteroid, and moving from place to place using thrusters would be complicated and dangerous and suck up a lot of fuel. If you've taken the time to glance at the picture at the top of this article, you know one potential solution: robotic tumbling cubes that can move by themselves, as if by magic. That's because their motion is driven entirely from the inside.

Essentially, NASA is funding a microgravity version of these:

 

Or maybe more accurately, this:

 

So yes, this has all been done before. Or at least, it's been done before on Earth, which may be harder in some ways because of that whole gravity thing. Space telescopes (and other space-y things) use reaction wheels to orient themselves, so it's been done (sort of) in microgravity, too. What's new about these cubes is the application to asteroids, and it makes a lot of sense. You don't get the fine level of control with this sort of jumping, tumbling motion that you'd get with a wheeled rover, but you can get generally where you need to go.

There are lots of other advantages to this design, too. It's sealed up with no external moving parts, which ought to improve reliability. It doesn't depend on expendable propellant, so with some solar panels on it, you'd be good to tumble around indefinitely. Putting different instruments on different sides of the cube gives you plenty of options for surface contact measurements. You'd deploy a bunch of these things from a mothership, which takes care of all of the control and communications and localization and navigation stuff, allowing the tumbling robots to be (relatively) cheap and simple.

The funding that this project is getting from NASA isn't for a deployable, space-ready system: it'll be enough to get the concept from TRL 2 to TRL 3.5. TRLs are Technology Readiness Levels, an actual government term that describes how improbably crazy some experimental new technology is. TRL 2 is "technology concept and/or application formulated," TRL 3 is "analytical and experimental critical function and/or characteristic proof of concept," and TRL 4 is "component and/or breadboard validation in laboratory environment."

For something to make it into space on a mission, it probably has to hit TRL 8, which is "actual system completed and qualified through test and demonstration." So don't hold your breath on this one, but by the time NASA figures out how to successfully wrangle asteroids, these little robots will probably be good to go.

Via [ NASA ]

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less