Nanotechnology Adds to Police Arsenal Against Impaired Drivers

Philips has developed a nano-enabled hand-held device that police can use to detect impaired drivers that have been intoxicated with something other than alcohol

1 min read

Aside from agility tests, police have had no technological way of detecting the use of controlled substances by drivers other than for alcohol. Cheech and Chong could merrily drive down the highway in their van made out cannabis and be stoned out of their minds and there was little that the police could do to prove it.

According to this rather colorful article, which uses terms like “stoners and dopers,” Philips has developed a hand-held device that employs nanotechnology based on the use of electromagnets and nanoparticles to “separate the sober from the impaired”. 

The article points out that the Netherlands-based Philips will roll this out initially in Europe. But oddly the article raises the specter of the device being a “privacy-invading drug tester.” I am not sure how much privacy you are entitled to when driving impaired on a public road, but in any case I sure this is not the kind of invasion of privacy caused by nanotech that has some so concerned.

The Conversation (0)
An image of stacked squares with yellow flat bars through them.
Emily Cooper
Green

Perhaps the most far-reaching technological achievement over the last 50 years has been the steady march toward ever smaller transistors, fitting them more tightly together, and reducing their power consumption. And yet, ever since the two of us started our careers at Intel more than 20 years ago, we’ve been hearing the alarms that the descent into the infinitesimal was about to end. Yet year after year, brilliant new innovations continue to propel the semiconductor industry further.

Along this journey, we engineers had to change the transistor’s architecture as we continued to scale down area and power consumption while boosting performance. The “planar” transistor designs that took us through the last half of the 20th century gave way to 3D fin-shaped devices by the first half of the 2010s. Now, these too have an end date in sight, with a new gate-all-around (GAA) structure rolling into production soon. But we have to look even further ahead because our ability to scale down even this new transistor architecture, which we call RibbonFET, has its limits.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}