The February 2023 issue of IEEE Spectrum is here!

Close bar

Nanosilica Filled Optically Clear Epoxy Adhesive

EP30NS is a two part, nanosilica filled epoxy system for bonding, sealing, coating and encapsulation.

1 min read
Master Bond EP30NS is a two component epoxy system with moderate viscosity and good flow

Master Bond EP30NS is a two component epoxy system with moderate viscosity and good flow.

Master Bond

Master Bond EP30NS is a two component epoxy system with moderate viscosity and good flow. It contains a nanosilica filler which lends to its specific property profile by providing a much higher abrasion resistance than a typical epoxy, and much lower linear shrinkage upon cure. EP30NS passes ASTM E595 for NASA low outgassing.

To obtain optical properties, cure overnight at room temperature, followed by 2-3 hours at 150-200°F. The epoxy has a moderate mixed viscosity ranging from 25,000 to 45,000 cps. It is optically clear, with a refractive index of 1.56. EP30NS has been independently tested per ASTM D4060-14 for abrasion resistance for 1,000 cycles and exhibited a loss of weight of only 18.3 mg. It is thus able to withstand exposure to scuffing, gouging, scraping, scratching and wear.

This system has excellent electrical insulation, making it well suited for small potting applications. It forms dimensionally stable, rigid bonds. It bonds well to metals, glass, ceramics, composites, rubbers, and plastics. It is chemically resistant to water, fuels, oils, acids and solvents. The service temperature range is from -60°F to +300°F. This system is recommended for high tech applications in the aerospace, electronic, optical, opto-electronic and specialty OEM industries. It is available in both standard packaging and specialty gun dispenser packaging.

For more information on EP30NS and to request a technical datasheet please visit

The Conversation (0)

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.


If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less