Nanoparticles Emitted from 3D Printers Could Pose a Risk

Emission rates are on par with other household devices, but the particles may be more toxic

2 min read

Nanoparticles Emitted from 3D Printers Could Pose a Risk

The migration of 3D printer technology from factory settings to people’s homes has triggered mainstream excitement about the technology's potential. In fact, it has even turned gun control laws on their ear after it was demonstrated that you could build a fully functional firearm with one of these 3-D printers.

What buyers of these systems may not have considered is that operating them could expose them to toxic nanoparticles. The hobbyist may now have to think about this potential risk when operating a 3-D printer in a garage or other indoor environment because of research out of the Illinois Institute of Technology showing that commercially available desktop 3-D printers emitted potentially harmful nanoparticles that could accumulate in indoor environments.

The research, which was published in the journal Atmospheric Environment (“Ultrafine particle emissions from desktop 3D printers”), demonstrated that common, commercially available 3-D printers available for home use emitted between 20 and 200 billion ultrafine particles (UFPs) per minute. The UFPs are, by definition, nanoparticles because their diameters are no larger than 10 nanometers.

The wide size range for the UFPs is due to the different kinds of printing technology used. A 3-D printer that uses a lower temperature polylactic acid (PLA) feedstock emits about 20 billion UFPs per minute whereas a higher temperature acrylonitrile butadiene styrene (ABS) feedstock printer produces about 200 billion UFPs per minute.

Alarming as these figures may sound, these emission rates are about on par with what is generated from “cooking on a gas or electric stove, burning scented candles, operating laser printers, or even burning a cigarette,” according to the Phys.org story covering the research. It’s hard to imagine that candles and gas stoves need to be eliminated from people’s homes. So, what gives?

The real measurement of risk involves not only the level of exposure we have to a given material but the hazard associated with that material because of its unique properties. UFPs generated by the 3-D printers the researchers studied had varying degrees of toxicity, depending on the feedstock they used. While PLA-generated UFPs have actually been shown to be biocompatible with mammals, previous studies have demonstrated that thermal decomposition byproducts from ABS processing have toxic effects in mice and rats.

The researchers remain somewhat circumspect about how this risk should be addressed. Their main advice: the operator of a home 3-D printer should ensure that the place where the machine is stationed is adequately ventilated, thereby reducing the exposure to the UFPs. Nonetheless, they note that more research needs to be performed to evaluate the risk from these 3-D printers.

Photo: Illinois Institute of Technology

The Conversation (0)