The February 2023 issue of IEEE Spectrum is here!

Close bar

Nanoparticles and Sunshine Split Water Molecule for Hydrogen Gas

Hypersolar chronicles their project to develop a process using their nanoparticles in combination with sunlight to produce hydrogen gas

2 min read

Just in case you believed that companies announce some nano-related research for a bit of buzz and then abandon the research, I am here to tell you that is not always the case. Back in March, I covered Santa Barbara, Calif.-based Hypersolar’s grand proposal for producing hydrogen gas in a zero-carbon process from wastewater.

To Hypersolar’s credit they have decided to chronicle their achievements (and perhaps failures) in a development process in which there are no guarantees of success. In the video below, Tim Young, CEO of HyperSolar, narrates a proof of concept prototype that demonstrates the effectiveness of the process. As Young explains, an inexpensive plastic baggy was filled with wastewater from a paper mill and on the bottom of the baggy is a small-scale solar device that is protected with Hypersolar’s polymer coating. Add sunlight, and hydrogen comes bubbling up.

“A big hurdle in using a solar to fuel conversion process is the stabilization of the semiconductor material against photocorrosion,” explains Young in a company press release announcing the development. “Our development of an efficient and low cost protective polymer coating that also allows good electrical conductivity is a significant achievement in our development of a cost effective means for using the power of the Sun to extract renewable hydrogen from water.”

Young suggests in the video that the small-scale solar device used in the prototype will be replaced with Hypersolar’s nanoparticles, which can be mass-produced and lead to large-scale production of hydrogen gas.

“The implications of our technology may be world changing,” claims Young in another company press release. “If we can successfully complete the development of a low cost, highly efficient solar powered water-splitting nanoparticle, we can use readily available seawater, runoff water, river water, or wastewater, to produce large quantities of hydrogen fuel to power the world. When the hydrogen fuel is used in fuel cells or combustion, clean water (pure H2O) returns back to the Earth. HyperSolar is making steady technical progress to enable this vision.”

It should be interesting to see whether this mimicking of photosynthesis will be able to compete with processes that simply replace platinum with a nanomaterial as a catalyst in the tried and tested electrocatalytic processes for producing hydrogen gas. 

The Conversation (0)

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.

Avicena

If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less