The February 2023 issue of IEEE Spectrum is here!

Close bar

Nanoparticle Helps Eradicate an Ovarian Tumor in a Day

Magneto-electric nanoparticles and an external magnetic field target drugs to tumor cells

2 min read
Nanoparticle Helps Eradicate an Ovarian Tumor in a Day
Slip Inside: In the presence of a magnetic field (H), magneto-electric nanoparticles cause pores to form in tumor cells, allowing cancer drugs in.
Illustration: Florida International University

Researchers at Florida International University (FIU) have developed a novel approach to treating ovarian cancer that employs nanoparticles in combination with a magnetic field to target cancer cells while leaving nearby healthy cells untouched.

In research published in the journal Scientific Reports (“Magneto-electric Nanoparticles to Enable Field-controlled High-Specificity Drug Delivery to Eradicate Ovarian Cancer Cells”), the FIU team demonstrated how the so-called magneto-electric nanoparticles (MENs) enable the chemotherapy drug, Taxol, to completely eradicate a tumor within 24 hours while leaving the healthy ovarian cells intact.

“Sparing healthy cells has been a major challenge in the treatment of cancer, especially with the use of Taxol; so in addition to treating the cancer, this could have a huge impact on side-effects and toxicity,” said Carolyn Runowicz, M.D., professor of gynecology and obstetrics at the Herbert Wertheim College of Medicine at FIU, in a press release.

While the use of various nanoparticles for delivering drugs to specific targets in the body has been with us for a decade now and has already created a billion-dollar industry for itself,  this marks the first time that these MENs nanoparticles have been used in this kind of therapy.

The basis of nano-enabled drug delivery has typically involved connecting the nanoparticle to some antibody that is attracted to a tumor and sending the nanoparticle through the bloodstream to find its target. There has been some question about the efficacy and specificity of this antibody approach.

This new technology developed at FIU appears to be more specific because it separates the cancer cells from the healthy cells by exploiting differences in the electrical properties of the two kinds of cells' membranes.

This separation is achieved because of the unique properties of the MENs. Unlike typical magnetic nanoparticles (MN), which can be controlled by a remote magnetic field, the MENs can have their intrinsic electric fields controlled by the external magnetic field. This means that the MENs can operate as localized magnetic-to-electric-field nano-converters. In other words, the MENs can generate the electric signals that govern molecular interactions. By creating a particular electric field, the MENs change the membrane properties of the cancer cells and not the healthy cells making them more porous.

As the Scientific Reports articles describes it: “The interaction between the MENs and the electric system of the membrane effectively serves as a field-controlled gate to let the drug-loaded nanoparticles enter specifically the tumor cells only.”

“This is an important beginning for us. I’m very excited because I believe that it can be applied to other cancers including breast cancer and lung cancer,” said Sakhrat Khizroev, professor of electrical and computer engineering at FIU in the press release.

Illustration: Florida International University

The Conversation (0)
Illustration showing an astronaut performing mechanical repairs to a satellite uses two extra mechanical arms that project from a backpack.

Extra limbs, controlled by wearable electrode patches that read and interpret neural signals from the user, could have innumerable uses, such as assisting on spacewalk missions to repair satellites.

Chris Philpot

What could you do with an extra limb? Consider a surgeon performing a delicate operation, one that needs her expertise and steady hands—all three of them. As her two biological hands manipulate surgical instruments, a third robotic limb that’s attached to her torso plays a supporting role. Or picture a construction worker who is thankful for his extra robotic hand as it braces the heavy beam he’s fastening into place with his other two hands. Imagine wearing an exoskeleton that would let you handle multiple objects simultaneously, like Spiderman’s Dr. Octopus. Or contemplate the out-there music a composer could write for a pianist who has 12 fingers to spread across the keyboard.

Such scenarios may seem like science fiction, but recent progress in robotics and neuroscience makes extra robotic limbs conceivable with today’s technology. Our research groups at Imperial College London and the University of Freiburg, in Germany, together with partners in the European project NIMA, are now working to figure out whether such augmentation can be realized in practice to extend human abilities. The main questions we’re tackling involve both neuroscience and neurotechnology: Is the human brain capable of controlling additional body parts as effectively as it controls biological parts? And if so, what neural signals can be used for this control?

Keep Reading ↓Show less
{"imageShortcodeIds":[]}