Nanoparticles Without Macroproblems

Quick and dirty advice for keeping nanotech clean

10 min read
Nanoparticles Without Macroproblems
Photo: David Clugston

Little by little, nanotechnology has crept up on us. From a mostly academic exercise 20 years ago, it has swiftly progressed to the point where the technology is just about everywhere: in fact, there may very well be engineered nanomaterials in the clothes you’re wearing at this very moment. If they were sold to you as wrinkle-free or stainproof, the fibers were almost certainly treated with nanotech processes that stave off stains and creases.

More than 500 products on the market today incorporate some kind of nanotechnology. With nanotech, sunscreens protect better against ultraviolet rays, paint can block cellphone signals, glass windows remain streak-free, washing machines can kill harmful bacteria, food storage bags can keep their contents fresher, tennis and badminton ­rackets are stiffer and lighter, and dietary supplements can claim to help ward off colds, flu, and anthrax. Toothpaste, hockey sticks, engine oil, and even a breast cream have all gotten the nano treatment lately [see photo, ” Fair Warning?”]. By 2015, according to the U.S. National Science Foundation, such goods and services could add more than US $1 trillion per year to the global economy.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Engineers Are Working on a Solar Microgrid to Outlast Lunar Nights

Future lunar bases will need power for mining and astronaut survival

4 min read
A rendering of a lunar base. In the foreground are rows of solar panels and behind them are two astronauts standing in front of a glass dome with plants inside.
P. Carril/ESA

The next time humans land on the moon, they intend to stay awhile. For the Artemis program, NASA and its collaborators want to build a sustained presence on the moon, which includes setting up a base where astronauts can live and work.

One of the crucial elements for a functioning lunar base is a power supply. Sandia National Laboratories, a research and development lab that specializes in building microgrids for military bases, is teaming up with NASA to design one that will work on the moon.

Keep Reading ↓ Show less

Trilobite-Inspired Camera Boasts Huge Depth of Field

New camera relies on “metalenses” that could be fabricated using a standard CMOS foundry

3 min read
Black and white image showing different white box shapes in rows

Scanning electron microscope image of the titanium oxide nanopillars that make up the metalens. The scale is 500 nanometers (nm).


Inspired by the eyes of extinct trilobites, researchers have created a miniature camera with a record-setting depth of field—the distance over which a camera can produce sharp images in a single photo. Their new study reveals that with the aid of artificial intelligence, their device can simultaneously image objects as near as 3 centimeters and as far away as 1.7 kilometers.

Five hundred million years ago, the oceans teemed with horseshoe-crab-like trilobites. Among the most successful of all early animals, these armored invertebrates lived on Earth for roughly 270 million years before going extinct.

Keep Reading ↓ Show less
Distinguishing weak signals from noise is a challenging task in data acquisition. In this webinar, we will explain challenges and explore solutions. Register now!
Keep Reading ↓ Show less