Mutant Quadrotor MAV Lifts Off After a Century of Development

If you take a quadrotor and bend all the motors out 90 degrees and all the rotors out 90 degrees more, you wouldn’t think it would fly. But it does

2 min read
Mutant Quadrotor MAV Lifts Off After a Century of Development

Micro Air Vehicles (MAVs) are way, way more useful if they can hover. Hovering capability allows MAVs to operate indoors, and to make it happen, you have to rely on platform like a helicopter (or a quadrotor) or something moreexotic. This thing definitely falls into the “more exotic” category—it’s called a cyclogyro, or cyclocopter.

Fundamentally, a cyclocopter is similar to a helicopter in that it creates lift through rapidly moving airfoils. Unlike a helicopter, a cyclocopter’s airfoils rotate around a horizontal axis, continually changing their pitch in order to generate thrust in one single direction:

It’s certainly not a simple system, which is why this idea (which has been around in the form of various prototypes for nearly a century) only got off the ground to make a first untethered flight just recently, thanks to a lot of hard work from Moble Benedict and his team at the University of Maryland. They’ve been developing a cycloidal rotor system made of carbon fiber and titanium that’s so far been applied to both a quad cyclocopter and a twin cyclocopter, and they’ve successfully gotten the two rotor version (with a supplemental tail rotor) into an untethered and more or less stable hover:

You’re probably wondering what the advantages of such a complex system are, and luckily, there are a few. Primarily, it's suggested that a cyclocopter would be more efficient than a helicopter, able to generate more thrust for a given amount of power. It’s also thought that cyclocopters will prove to be more maneuverable, since the thrust can be vectored very rapidly. On the downside, you’ve got the overall complexity of the system to deal with, and the weight of the rotors might cancel out any efficiency gains.

There are definitely a lot of questions about the feasibility of a design like this, but in order to figure it out, the best thing to do is just build them and see what happens, and from the sound of things, the UMD team is finally cashing in on about a century worth of speculation.

[ Paper (*.PDF) ] Via [ UMD ]

The Conversation (0)

How Robots Can Help Us Act and Feel Younger

Toyota’s Gill Pratt on enhancing independence in old age

10 min read
An illustration of a woman making a salad with robotic arms around her holding vegetables and other salad ingredients.
Dan Page
Blue

By 2050, the global population aged 65 or more will be nearly double what it is today. The number of people over the age of 80 will triple, approaching half a billion. Supporting an aging population is a worldwide concern, but this demographic shift is especially pronounced in Japan, where more than a third of Japanese will be 65 or older by midcentury.

Toyota Research Institute (TRI), which was established by Toyota Motor Corp. in 2015 to explore autonomous cars, robotics, and “human amplification technologies,” has also been focusing a significant portion of its research on ways to help older people maintain their health, happiness, and independence as long as possible. While an important goal in itself, improving self-sufficiency for the elderly also reduces the amount of support they need from society more broadly. And without technological help, sustaining this population in an effective and dignified manner will grow increasingly difficult—first in Japan, but globally soon after.

Keep Reading ↓Show less