MIT Unveils a Roboat Big Enough to Stand on

A bunch of these boats could meet up to form ad hoc structures, like a bridge or a platform.

2 min read
Roboat II in tests on the water
Photo: MIT

An early idea for making the most of autonomous technology was to put a human-driven lead car in front of a string of robocars. It’s called platooning, and it looks for all the world like a mama goose leading a gaggle of goslings.

You can play “follow the leader” on the water, too, but because boats can easily touch and move in tandem, you can have much more complex arrangements than simple caravans. The coordination between the lead boats and the followers allows you to go lighter on sensors and other hardware when designing those follower boats, which can rely on the lead boat to sense the wider environment. This all means that small boats can form and reform in a variety of ways—“shapeshifting” into useful structures like a bridge or a platform. Presto! You’ve got yourself a lilypad fit to host a popup event on a canal or lake—say, a flower show or a concert.

“You could create on demand whatever is needed to shift human activities to the water,” Daniela Rus, a professor of electrical engineer and computer science at MIT tells IEEE Spectrum. She is one of the leaders of a project jointly run by the university’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and its Senseable City Lab, to explore autonomous boats.

Five years ago the project began by moving meter-long boats around in pools and in a canal; now it is graduating to bigger boats. “Roboat II” measures 2 meters, which MIT calls “Covid-friendly” because it is sufficient for social isolation between passengers. It is being tested on Boston’s Charles River, and it has also braved the canals of Amsterdam, where it steered itself around for three hours and returned to within 17 centimeters (6.7 inches) of its origin. A full-size model, at 4 meters, is being built by the Amsterdam Institute for Advanced Metropolitan Solutions, for testing in Amsterdam’s canals.

The latest developments are described in a paper that is being presented today virtually, at the International Conference on Intelligent Robots and Systems. The lead author is Wei Wang, a postdoctoral fellow at MIT; Rus is among the co-authors.

“In order to be really accurate and to get situational awareness you have to put a rich set of sensors on every single node in the system—every single boat,” Rus says. “With the leader-follower arrangement you don't have to have that. If you have a large swarm of vehicles, do they all need to be endowed with all the sensors?”

MIT’s smallest robo-boats haven’t made the jump from the lab to the marketplace, although they can in principle be used for mapping, water-pollution testing, and other highly localized work. The real promise lies in bigger boats, with their greater carrying capacity and longer run times between charges.

Autonomous charging is possible, though, for boats large or small. They can always plug themselves in, much as a Roomba vacuum cleaner does. Full autonomy is the ultimate goal, but there’s a lot that can be done even now. Just follow the leader.

The Conversation (0)

2021 Top 10 Tech Cars


The trend toward all-electric is accelerating 

1 min read
Photo: Rimac Automobili

The COVID-19 pandemic put the auto industry on its own lockdown in 2020. But the technological upheavals haven't slowed a bit.

The march toward electric propulsion, for example, continued unabated. Nine of our 10 Top Tech Cars this year are electrically powered, either in EV or gas-electric hybrid form. A few critical model introductions were delayed by the virus, including the debut of one of our boldface honorees: the long-awaited 2021 Lucid Air electric sedan. It's expected to hit the market in a few months. But the constellation of 2021's electric stars covers many categories and budgets, from the ultra-affordable, yet tech-stuffed Hyundai Elantra Hybrid to the US $2.4 million Rimac C Two hypercar.

Keep Reading ↓ Show less