Close

Mildred Dresselhaus: The Queen of Carbon

Electronics made from nanoscale tubes, wires, and sheets of carbon are coming, thanks to pioneering researcher Mildred Dresselhaus

10 min read
Mildred Dresselhaus: The Queen of Carbon
Photo: Mike McGregor

Before silicon got its own valley, this mild-mannered element had to vanquish many other contenders to prove itself the premier semiconductor technology. It did so in the 1950s and 1960s. Today, carbon is poised at a similar crossroads, with carbon-based technologies on the verge of transforming computing and boosting battery-storage capacities. Already, researchers have used these technologies to demonstrate paper-thin batteries, unbreakable touch screens, and terabit-speed wireless communications. And on the farther horizon they envision such carbon-enabled wonders as space elevators, filters that can make seawater drinkable, bionic organs, and transplantable neurons.

Whatever miracles emerge from Carbon Valley, its carbon-tech titans will surely think fondly upon their field's founding mother, Mildred Dresselhaus. This MIT professor of physics and engineering has, since the early 1960s, been laying the groundwork for networks of nanometer-scale carbon sheets, lattices, wires, and switches. Future engineers will turn these things, fabricated from carbon-based materials such as graphene, into the systems that will carry computing into its next era.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

For Better AR Cameras, Swap Plastic Lenses for Silicon Chips

Metalenz adds the power of polarization to its innovative PolarEyes chips

5 min read
Silicon Nanostructures

Metalenz uses standard semiconductor manufacturing processes to build metasurfaces comprising nanostructures that control light, with one chip replacing multiple traditional camera lenses.

Metalenz

This week, startup Metalenz announced that it has created a silicon chip that, paired with an image sensor, can distinguish objects by the way they polarize light. The company says its “PolarEyes” will be able to make facial authentication less vulnerable to spoofing, improve 3D imaging for augmented and virtual reality, aid in telehealth by distinguishing different types of skin cells, and enhance driving safety by spotting black ice and other hard-to-see road hazards.

The company, founded in 2017 and exiting stealth a year ago, previously announced that it was commercializing waveguides composed of silicon nanostructures as an alternative to traditional optics for use in mobile devices.

Keep Reading ↓ Show less

How Quantum Computers Can Make Batteries Better

Hyundai partners with IonQ to optimize lithium-air batteries

3 min read
A tan car with a Hyundai logo. Overlayed is a rendering of lithium-air batteries with a call-out showing a rendering of a molecular compound
Hyundai

Hyundai is now partnering with startup IonQ to see how quantum computers can design advanced batteries for electric vehicles, with the aim of creating the largest battery chemistry model yet to be run on a quantum computer, the companies announced yesterday.

A quantum computer with high enough complexity—for instance, enough components known as quantum bits or "qubits"—could theoretically achieve a quantum advantage where it can find the answers to problems no classical computer could ever solve. In theory, a quantum computer with 300 qubits fully devoted to computing could perform more calculations in an instant than there are atoms in the visible universe.

Keep Reading ↓ Show less

This Gift Will Help Your Aspiring Engineer Learn Technology

Know someone that is hard to shop for? We have the perfect gift for you.

4 min read