The August 2022 issue of IEEE Spectrum is here!

Close bar

Micro Energy Harvesters Will Make Cyborg Insects Unstoppable

Now that remote-controlled cyborg insects don't have to stop to recharge, we've eliminated the one weakness that has so far kept them from taking over the world

2 min read
Micro Energy Harvesters Will Make Cyborg Insects Unstoppable

Cyborg insects have been flying under remote control for over two years now, but the strict weight limits imposed by the fact that you're trying to turn a bug into a functional UAV means that their usefulness is still somewhat constrained. A rhinoceros beetle, for example, can manage to haul about 30% of its own weight as payload. This works out to be somewhere around 2.5 grams, which is not a whole heck of a lot, and if you're eating up a significant portion of that space with a battery, it doesn't leave much room for (say) a camera or missiles.

One option is a small nuclear battery, but a much more elegant solution (with less potential for creating a giant mutant cyborg insect of doom) is to simply harvest power directly from the insect itself. Researchers from the University of Michigan and Western Michigan University have developed a prototype insect energy harvester, pictured above, made of a piezoelectric material that converts wingbeats into electricity. By mounting one of these piezoelectric springs on each wing, simulations show that over 100 microwatts (μW) can be harvested, which is significantly more than the maximum of 80μW it takes to control the insect itself.

While this level of power isn't going to be able to charge those miniaturized laser cannons that I'm reasonably sure DARPA is working on, it does significantly reduce the energy drain on any auxiliary power system that might have to be carried along anyway. And as with all electronics, efficiency will only go up as mass goes down, until ultimately power will only be limited by the lifespan of the insect and the amount of tasty fruit that you can get your bug to chow down on in the middle of a mission.

[ Paper (*.PDF) ] via [ NBF ]

The Conversation (0)

How Robots Can Help Us Act and Feel Younger

Toyota’s Gill Pratt on enhancing independence in old age

10 min read
An illustration of a woman making a salad with robotic arms around her holding vegetables and other salad ingredients.
Dan Page
Blue

By 2050, the global population aged 65 or more will be nearly double what it is today. The number of people over the age of 80 will triple, approaching half a billion. Supporting an aging population is a worldwide concern, but this demographic shift is especially pronounced in Japan, where more than a third of Japanese will be 65 or older by midcentury.

Toyota Research Institute (TRI), which was established by Toyota Motor Corp. in 2015 to explore autonomous cars, robotics, and “human amplification technologies,” has also been focusing a significant portion of its research on ways to help older people maintain their health, happiness, and independence as long as possible. While an important goal in itself, improving self-sufficiency for the elderly also reduces the amount of support they need from society more broadly. And without technological help, sustaining this population in an effective and dignified manner will grow increasingly difficult—first in Japan, but globally soon after.

Keep Reading ↓Show less