Metrics for Nanotechnology's Development Are Just Pieces of the Puzzle

The Chinese Academy of Sciences' casting doubt on the value of Chinese research papers throws into question that metric for nanotechnology's development

2 min read
Metrics for Nanotechnology's Development Are Just Pieces of the Puzzle

I am the type who can easily fall prey to “told-you-so” syndrome. Today is just such an instance.

Last month, I covered research that seemed to indicate that because China was producing so many research papers, they had a kind of lead in nanotech research.

At the time, I cautioned that just because Chinese researchers were publishing lots of research did not necessarily mean much if the research was not being cited by other researchers. I said, “I think it is altogether possible that papers published in journals outside of the top publications might rack up a lot query hits but mean little in terms of actual scientific impact.”

Bingo. I expected sooner or later some kind of evidence or other form of research would validate my point, but I didn’t expect it to come from the Chinese Academy of Sciences (CAS).

According to the CAS article, a “publication bubble” in China is threatening to derail the country’s scientific advances. China has experienced a 14 percent increase in scientific publications from 2005 to 2009. Impressive, but as the article points out:

“But these impressive numbers mask an uncomfortable fact: most of these papers are of low quality or have little impact. Citation per article (CPA) measures the quality and impact of papers. China's CPA is 1.47, the lowest figure among the top 20 publishing countries, according to Elsevier's Scopus citation database.”

To me it’s all a bit of unnecessary worry either way. Whatever metric you want to choose—number of patents, research papers, government investment, etc.—it’s only going to give you part of the picture, a piece of the puzzle, if you will.

It really comes down to how you can put the puzzle together for anyone to make sense of it all. Ultimately, it is a qualitative question, not a quantitative one, as I’ve said before. But people's instinct is to trust a number rather than an expert opinion, often for good reason. Until that changes, we'll continue to see a steady stream of numbers for quantifying the development of nanotech.

The Conversation (0)

The Ultimate Transistor Timeline

The transistor’s amazing evolution from point contacts to quantum tunnels

1 min read
A chart showing the timeline of when a transistor was invented and when it was commercialized.
LightGreen

Even as the initial sales receipts for the first transistors to hit the market were being tallied up in 1948, the next generation of transistors had already been invented (see “The First Transistor and How it Worked.”) Since then, engineers have reinvented the transistor over and over again, raiding condensed-matter physics for anything that might offer even the possibility of turning a small signal into a larger one.

Keep Reading ↓Show less