The December 2022 issue of IEEE Spectrum is here!

Close bar

Methanol-Fueled Cars Could Drive Us Toward an Emissionless Future

Icelandic firm Carbon Recycling International is turning industrial pollution into a low-carbon fuel for cars, trucks, and ships

7 min read
Photo: Carbon Recycling International
Road to Methanol: Iceland’s Carbon Recycling International has pioneered a way to produce methanol fuel using renewable energy and waste CO 2. A nearby geothermal power station supplies CO 2 and electricity to the methanol plant and mineral-rich water to the famous Blue Lagoon spa (above).
Photo: Carbon Recycling International

Just off a two-lane highway that winds through the black volcanic rock fields of southwest Iceland sits a nondescript industrial plant. Its multistoried network of pipes and tubes reveal little about what goes on there. Each year hundreds of thousands of tourists pass right by, on their way to visit the strange and beautiful Blue Lagoon, an outdoor spa whose steaming milky blue water flows directly from the nearby Svartsengi geothermal power station. If tourists notice the plant at all, it’s maybe to wonder why it’s here.

As it happens, this plant also depends on the Svartsengi facility, not for its silica-infused water but for its carbon dioxide. And what’s going on inside the plant has the potential to dramatically decarbonize the transportation sector. The plant belongs to Carbon Recycling International (CRI), whose engineers have developed a novel method of using renewable energy to produce methanol fuel from waste streams of CO2 and electrolyzed water. Methanol generated this way, CRI is betting, could have a real impact on climate change.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

IEEE President’s Note: Looking to 2050 and Beyond

The importance of future-proofing IEEE

4 min read
Photo of K. J. Ray Liu
IEEE

What will the future of the world look like? Everything in the world evolves. Therefore, IEEE also must evolve, not only to survive but to thrive.

How will people build communities and engage with one another and with IEEE in the future? How will knowledge be acquired? How will content be curated, shared, and accessed? What issues will influence the development of technical standards? How should IEEE be organized to be most impactful?

Keep Reading ↓Show less

The Device That Changed Everything

Transistors are civilization’s invisible infrastructure

2 min read
A triangle of material suspended above a base

This replica of the original point-contact transistor is on display outside IEEE Spectrum’s conference rooms.

Randi Klett

I was roaming around the IEEE Spectrum office a couple of months ago, looking at the display cases the IEEE History Center has installed in the corridor that runs along the conference rooms at 3 Park. They feature photos of illustrious engineers, plaques for IEEE milestones, and a handful of vintage electronics and memorabilia including an original Sony Walkman, an Edison Mazda lightbulb, and an RCA Radiotron vacuum tube. And, to my utter surprise and delight, a replica of the first point-contact transistor invented by John Bardeen, Walter Brittain, and William Shockley 75 years ago this month.

I dashed over to our photography director, Randi Klett, and startled her with my excitement, which, when she saw my discovery, she understood: We needed a picture of that replica, which she expertly shot and now accompanies this column.

Keep Reading ↓Show less

Solving Automotive Design Challenges With Simulation

Learn about low-frequency electromagnetic simulations and see a live demonstration of COMSOL Multiphysics software

1 min read

The development of new hybrid and battery electric vehicles introduces numerous design challenges. Many of these challenges are static or low-frequency electromagnetic by nature, as the devices involved in such designs are much smaller than the operating wavelength. Examples include sensors (such as MEMS sensors), transformers, and motors. Many of these challenges include multiple physics. For instance, sensors activated by acoustic energy as well as heat transfer in electric motors and power electronics combine low-frequency electromagnetic simulations with acoustic and heat transfer simulations, respectively.

Multiphysics simulation makes it possible to account for such phenomena in designs and can provide design engineers with the tools needed for developing products more effectively and optimizing device performance.

Keep Reading ↓Show less