Mastering the Brain-Computer Interface

At Johns Hopkins University, engineers are learning to translate between the neural signals of the brain and the machine language of a prosthetic arm

4 min read

The first human clinical trials of a brain implant intended to control a prosthetic arm are slated for 2009 at the Johns Hopkins University Biomedical Instrumentation and Neuroengineering Laboratory, in Baltimore. In one brightly lit room, a young volunteer named Rob Rasmussen sits with his head strapped into a tight-fitting cap, inside which 64 electrodes monitor his brain waves. The electrodes detect the electrical activity caused by neurons firing inside the motor areas of his brain and send the raw impulses to a nearby instrument to be digitized. The digitized signals are translated into real-time traces that scrawl across two wide-screen monitors. One of the monitors shows the 64 simultaneous channels of brain-wave recordings. The other, larger monitor is devoted to two entirely different traces--those of the mu bands. These are the keys to controlling a prosthetic arm with the mind.

Mu bands are an abstract feature of the brain waves picked up by the electrodes: they provide a broad reflection of what's happening in the motor areas of the brain. In this case, they characterize what Rasmussen is thinking about doing with his hands. The mu bands maintain a regular rhythm that desynchronizes in the left side of the brain when you wiggle a finger or arch your foot on the right side of your body (and vice versa). That rhythm also responds the same way--and this is key--to merely thinking about doing those things. So to disturb the waves of his mu bands, Rasmussen thinks about moving his hands. To let the waves return to their natural rhythm, he stops thinking about moving his hands. His actual hands are resting lightly on the arms of his chair. They don't even twitch.

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

This CAD Program Can Design New Organisms

Genetic engineers have a powerful new tool to write and edit DNA code

11 min read
A photo showing machinery in a lab

Foundries such as the Edinburgh Genome Foundry assemble fragments of synthetic DNA and send them to labs for testing in cells.

Edinburgh Genome Foundry, University of Edinburgh

In the next decade, medical science may finally advance cures for some of the most complex diseases that plague humanity. Many diseases are caused by mutations in the human genome, which can either be inherited from our parents (such as in cystic fibrosis), or acquired during life, such as most types of cancer. For some of these conditions, medical researchers have identified the exact mutations that lead to disease; but in many more, they're still seeking answers. And without understanding the cause of a problem, it's pretty tough to find a cure.

We believe that a key enabling technology in this quest is a computer-aided design (CAD) program for genome editing, which our organization is launching this week at the Genome Project-write (GP-write) conference.

With this CAD program, medical researchers will be able to quickly design hundreds of different genomes with any combination of mutations and send the genetic code to a company that manufactures strings of DNA. Those fragments of synthesized DNA can then be sent to a foundry for assembly, and finally to a lab where the designed genomes can be tested in cells. Based on how the cells grow, researchers can use the CAD program to iterate with a new batch of redesigned genomes, sharing data for collaborative efforts. Enabling fast redesign of thousands of variants can only be achieved through automation; at that scale, researchers just might identify the combinations of mutations that are causing genetic diseases. This is the first critical R&D step toward finding cures.

Keep Reading ↓ Show less