The February 2023 issue of IEEE Spectrum is here!

Close bar

Mantis Shrimp Eyes Inspire Cameras to See Cancer

Mantis shrimp eyes helped inspire a sensor that can detect cancer based on polarized light reflections

2 min read
Mantis Shrimp Eyes Inspire Cameras to See Cancer
Photo: Alastair Pollock/Getty Images

Millions of years of evolution have given the Mantis shrimp compound eyes to spot delicious meals that it can either spear or club to death in its underwater environment. More recently, the natural design of those eyes has inspired a new camera sensor that could spot cancer cells inside patients' bodies.

Engineers developed the sensor to mimic the Mantis shrimp's ability to filter polarized light—light waves vibrating along a single plane. Sensitivity to polarized light can help with cancer detection because cancerous lesions tend to reflect light in a way that causes more depolarization than does healthy tissue. Tests in mice have already shown how the new sensor can help detect flat, depressed, cancerous lesions that might otherwise be difficult to spot during a traditional endoscopy exam.

"Nature has [been] coming up with elegant and efficient design principles, so we are combining the mantis shrimp’s millions of years of evolution—nature’s engineering—with our relatively few years of work with the technology," said Justin Marshall, a neurobiologist at the Queensland Brain Institute of the University of Queensland, Australia, in a news release.

Mantis shrimp filter polarized light through their eye cells by using microvilli that resemble tiny hair-like objects. By comparison, the new sensor uses aluminum nanowires that together act as linear polarization filters that achieve a similar effect. Marshall and his international colleagues described the new sensor in a review article published in the journal Proceedings of the IEEE.

So far, it's the only polarization imaging sensor capable of fitting on the front top of the flexible endoscopes that physicians use to snake through patients' bodies to look inside. That could prove useful for helping to identify hard-to-see lesions that don't stand out from healthy tissue.

In the tests on mice, the sensor was used alongside a fluorescence-sensitive CCD camera that is designed to spot cancerous regions because a special fluorescent dye accumulates in abnormal tissue more than it does among groups of normal cells. Several members of the international research team, including engineers at Washington University in St. Louis, also developed high-tech goggles capable of helping surgeons detect cancer via such fluorescent markers.

The polarization sensor has other uses that go well beyond cancer screening. For instance, the Proceedings of the IEEE journal article laid out the vision for creating an implantable neural recording device that could help study neural activity in awake, freely-moving animals. It also pointed to the possibility of having real-time imaging that shows the stress and strain of soft biological tissue. Marine biologists at the University of Texas at Austin have even used the new sensor to study how female swordtail fish are attracted to ornamental patterns on the tails of male swordtail fish that are only visible in polarized light.

The Conversation (0)
Illustration showing an astronaut performing mechanical repairs to a satellite uses two extra mechanical arms that project from a backpack.

Extra limbs, controlled by wearable electrode patches that read and interpret neural signals from the user, could have innumerable uses, such as assisting on spacewalk missions to repair satellites.

Chris Philpot

What could you do with an extra limb? Consider a surgeon performing a delicate operation, one that needs her expertise and steady hands—all three of them. As her two biological hands manipulate surgical instruments, a third robotic limb that’s attached to her torso plays a supporting role. Or picture a construction worker who is thankful for his extra robotic hand as it braces the heavy beam he’s fastening into place with his other two hands. Imagine wearing an exoskeleton that would let you handle multiple objects simultaneously, like Spiderman’s Dr. Octopus. Or contemplate the out-there music a composer could write for a pianist who has 12 fingers to spread across the keyboard.

Such scenarios may seem like science fiction, but recent progress in robotics and neuroscience makes extra robotic limbs conceivable with today’s technology. Our research groups at Imperial College London and the University of Freiburg, in Germany, together with partners in the European project NIMA, are now working to figure out whether such augmentation can be realized in practice to extend human abilities. The main questions we’re tackling involve both neuroscience and neurotechnology: Is the human brain capable of controlling additional body parts as effectively as it controls biological parts? And if so, what neural signals can be used for this control?

Keep Reading ↓Show less
{"imageShortcodeIds":[]}