The July 2022 issue of IEEE Spectrum is here!

Close bar

Making Talking On A Cell Phone While Driving Just A Little Bit Safer

Stanford researchers trick chatterers into paying attention to the road

2 min read
Making Talking On A Cell Phone While Driving Just A Little Bit Safer

Even though we all know that talking on a cell phone while driving is not the safest activity in the world, we’re not giving it up. We are, of course, going hands free—in many states, that’s the law.

But short of turning off our phones all together, there’s not much else we can do. Or is there? Eyal Ophir and his colleagues in Stanford University’s CHIMe Lab (that stands for Communications Between Humans and Interactive Media) say there is. They’re currently writing up the results of their latest study on multitasking while driving.

This is the same group Stanford researchers who, in August, dropped a dime on multitaskers everywhere by proving that folks who think they are getting more done by juggling multiple tasks instead of focusing on just one are kidding themselves, and generated a media buzz.

This time, they looked at their favorite research subjects—multitaskers of two breeds, low and high. In general, they found, high multitaskers are easily distractible—that could be a good thing when they’re having a heated cell phone conversation yet catch a glimpse of something on the road ahead that could cause trouble. Low multitaskers are less distractible, which could mean that they’re more likely to focus on their cell phone conversation than the road.

The trick was to build some kind of tool that can help both types of multitaskers pay attention to their driving when it’s most critical.

I ran into Ophir at the unveiling of a new autonomous vehicle—perhaps the ultimate solution to the driver distraction problem, but one that won’t be parked in the average driveway anytime soon. He told me about the tool he came up with.

The concept—moving the voice coming from the cell phone around in the car. Not hard to do, with today’s virtual surround sound technology. Ophir designed a system that puts the voice up at the driver’s level when road conditions are relatively safe, then drops it down to the driver’s feet when conditions are more hazardous. He says he could have done it the opposite way and it appears that it would have worked equally well, but that research has shown that voices coming from lower than the speaker are less dominant, hence his choice of high and low. He tested the system with drivers in a simulator, and found that drivers quickly learned that a change in position of the voice meant, “Pay attention to the road!”  They later rated the cell phone conversation as less distracting when the sound was coming from their feet.

In the real world, Ophir sees this system linked to the driver’s GPS and a database of accidents, to identify potentially treacherous areas of road. Ophir expects to publish this research soon.

The Conversation (0)

3 Ways 3D Chip Tech Is Upending Computing

AMD, Graphcore, and Intel show why the industry’s leading edge is going vertical

8 min read
Vertical
A stack of 3 images.  One of a chip, another is a group of chips and a single grey chip.
Intel; Graphcore; AMD
DarkBlue1

A crop of high-performance processors is showing that the new direction for continuing Moore’s Law is all about up. Each generation of processor needs to perform better than the last, and, at its most basic, that means integrating more logic onto the silicon. But there are two problems: One is that our ability to shrink transistors and the logic and memory blocks they make up is slowing down. The other is that chips have reached their size limits. Photolithography tools can pattern only an area of about 850 square millimeters, which is about the size of a top-of-the-line Nvidia GPU.

For a few years now, developers of systems-on-chips have begun to break up their ever-larger designs into smaller chiplets and link them together inside the same package to effectively increase the silicon area, among other advantages. In CPUs, these links have mostly been so-called 2.5D, where the chiplets are set beside each other and connected using short, dense interconnects. Momentum for this type of integration will likely only grow now that most of the major manufacturers have agreed on a 2.5D chiplet-to-chiplet communications standard.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}