The February 2023 issue of IEEE Spectrum is here!

Close bar

Magnetic Nanoparticles Lead to a New Class of Composites

Greater control over material orientation leads to a new class of composites

2 min read
Magnetic Nanoparticles Lead to a New Class of Composites

How can you make a material that is simultaneously strong, flexible and light? The answer has long been advanced composites that combine plastics, metals and ceramics to get the best characteristics out of each of them.

But achieving a balance between these materials' qualities of strength, flexibility and lightness is difficult to come by and often comes down to being able to manipulate the various materials into the perfect orientation to each other.

Researchers at ETH-Zürich have developed a process that gives them a far greater control over that orientation than ever before. The result is an entirely new class of composite that mimics the precise layering seen in nature's abalone seashell.

The idea was simple. Why not get the materials to move to where you wanted them to go by the use of magnetic force, not unlike a bar magnet orienting iron fillings? However, the obvious problem is that not all materials used in composites are magnetic.

The researchers, who published their work in the January 13th issue of the journal Science in an article entitled "Composites Reinforced in Three Dimensions by Using Low Magnetic Fields," overcame this obstacle by adding a small amount of magnetic nanoparticles to the nonmagnetic materials.

The researchers discovered that this process of adding magnetic nanoparticles only works with stiff elements in the micrometer size range, which just so happens to overlap with the sizes the composite industry uses.

One would have to believe that this research will quickly find itself in commercial use as the ETH-Zürich researchers are continuing this work in collaboration with composite companies to get this straight into industrial processes.

The material will certainly get early adopters in any industry in which strong, light and flexible are sought after characteristics. While aerospace immediately comes to mind, the growing market of wind turbines should likely be another.

The addition of nanomaterials into advanced composites no longer seems like a mere marketing ploy,  but is increasingly becoming a way of actually making composites stronger or imbuing them with greater functionality. Perhaps nanocomposites are finally coming into their own.

The Conversation (0)

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.

Avicena

If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less