The February 2023 issue of IEEE Spectrum is here!

Close bar

Little Rolling Robot Transforms Into Helicopter

How do you get a ground robot over an obstacle? Just turn it into a helicopter

2 min read
Little Rolling Robot Transforms Into Helicopter

Designing a robot that can traverse variable terrain usually involves a number of unsatisfactory compromises. You can go with a flying robot, which will almost never get stuck, but is of limited use in detailed sensing and can't operate for very long. Or, you can go with a ground robot, which is much more efficient, but also much more likely to run into an obstacle that it can't get around.

An ideal platform would spend most of its time on the ground but still be able to fly when it needs to, but this is a very tricky thing to make happen, since the design of something that drives is fundamentally different from the design of something that flies. Researchers from the Center for Distributed Robotics at the University of Minnesota have managed to create a single robot that can actually do this effectively:

This is just the first (very fragile) prototype; the next version is much more robust and relies on a non-coaxial system for flight:

hybrid land air robot

hybrid land air robot

As it turns out, it was actually more efficient to design the robot with two completely independent motor systems than to try to design a transmission that would allow the low speed wheel motors to power the rotors or vice versa. And even then, it's still extremely complicated: the rotor folding mechanism cost almost US $20,000 to create. With that in mind, future developments for this platform will focus on making things simpler, while also teaching the robot to take advantage of its hybrid nature when it comes to autonomous path planning.

The researchers -- Alex Kossett and robotics professor and IEEE Fellow Nikolaos Papanikolopoulos -- describe their work in a paper, "A Robust Miniature Robot Design for Land/Air Hybrid Locomotion," presented yesterday at the IEEE International Conference on Robotics and Automation (ICRA), in Shanghai.

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less