Linking with Light

Having proven their worth in long-distance communications, photons will soon take over inside the computer

11 min read
Illustration by Bryan Christie Design
Illustration: Bryan Christie Design

graphic illustr. Optical Interconnects

Illustration: Bryan Christie
Coming Soon: Optical Interconnects This approach to signal transfer is moving from longer-distance applications, such as linking separate computers, to joining chips within a computer. Click on image for larger view.

The movement of data in a computer is almost the converse of the movement of traffic in a city. Downtown, in the congested core of the microprocessor, the bits fly at an extraordinary rate. But further out, on the broad avenues of copper that link one processor to another and one circuit board to the next, things slow down to a comparative crawl. A Pentium 4 introduced this spring operates at 2.4 GHz, but the data travels on a bus operating at only 400 MHz. The speed picks up again, though, out on the highways of the world’s optical-fiber telecommunications networks. Obviously, the closer engineers can bring the optical superhighway to the microprocessor, the fewer copper bottlenecks can occur, as if you could pull out of your driveway straight onto the Autobahn.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Engineers Are Working on a Solar Microgrid to Outlast Lunar Nights

Future lunar bases will need power for mining and astronaut survival

4 min read
A rendering of a lunar base. In the foreground are rows of solar panels and behind them are two astronauts standing in front of a glass dome with plants inside.
P. Carril/ESA

The next time humans land on the moon, they intend to stay awhile. For the Artemis program, NASA and its collaborators want to build a sustained presence on the moon, which includes setting up a base where astronauts can live and work.

One of the crucial elements for a functioning lunar base is a power supply. Sandia National Laboratories, a research and development lab that specializes in building microgrids for military bases, is teaming up with NASA to design one that will work on the moon.

Keep Reading ↓ Show less

Trilobite-Inspired Camera Boasts Huge Depth of Field

New camera relies on “metalenses” that could be fabricated using a standard CMOS foundry

3 min read
Black and white image showing different white box shapes in rows

Scanning electron microscope image of the titanium oxide nanopillars that make up the metalens. The scale is 500 nanometers (nm).


Inspired by the eyes of extinct trilobites, researchers have created a miniature camera with a record-setting depth of field—the distance over which a camera can produce sharp images in a single photo. Their new study reveals that with the aid of artificial intelligence, their device can simultaneously image objects as near as 3 centimeters and as far away as 1.7 kilometers.

Five hundred million years ago, the oceans teemed with horseshoe-crab-like trilobites. Among the most successful of all early animals, these armored invertebrates lived on Earth for roughly 270 million years before going extinct.

Keep Reading ↓ Show less
Distinguishing weak signals from noise is a challenging task in data acquisition. In this webinar, we will explain challenges and explore solutions. Register now!
Keep Reading ↓ Show less