This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The James Webb Space Telescope was a Career-Defining Project for Janet Barth

NASA’s first female engineering chief was there from conception to first light

5 min read
portrait of older woman in light blue jacket against dark gray background Info for editor if needed:
Sue Brown

Janet Barth spent most of her career at the Goddard Space Flight Center, in Greenbelt, Md.—which put her in the middle of some of NASA’s most exciting projects of the past 40 years.

She joined the center as a co-op student and retired in 2014 as chief of its electrical engineering division. She had a hand in Hubble Space Telescope servicing missions, launching the Lunar Reconnaissance Orbiter and the Magnetospheric Multiscale mission, and developing the James Webb Space Telescope.

Keep Reading ↓Show less

A Diamond "Blanket" Can Cool the Transistors Needed for 6G

Gallium nitride transistors have struggled to handle the thermal load of high-frequency electronics

4 min read
blue mountain of crystals with an inset of molecules on a pink background
Srabanti Chowdhury/Stanford

High-power radio-frequency electronics are a hot commodity, both figuratively and literally. The transistors needed to amplify 5G and future 6G signals are struggling to handle the thermal load, causing a bottleneck in development. Engineers in the United States and England have teamed up to demonstrate a promising solution—swaddling individual transistors in a blanket of thermally conductive diamond to keep them cool.

“Thermal issues are currently one of the biggest bottlenecks that are plaguing any kind of microelectronics,” says team lead Srabanti Chowdhury, professor of electrical engineering at Stanford University. “We asked ourselves ‘can we perform device cooling at the very material level without paying a penalty in electrical performance?’”

Keep Reading ↓Show less

Get the Rohde & Schwarz EMI White Paper

Learn how to measure and reduce common mode electromagnetic interference (EMI) in electric drive installations

1 min read
Rohde & Schwarz

Nowadays, electric machines are often driven by power electronic converters. Even though the use of converters brings with it a variety of advantages, common mode (CM) signals are a frequent problem in many installations. Common mode voltages induced by the converter drive common mode currents damage the motor bearings over time and significantly reduce the lifetime of the drive.

Download this free whitepaper now!

Keep Reading ↓Show less