The August 2022 issue of IEEE Spectrum is here!

Close bar

Learning From Failure

When success becomes too much of a good thing

3 min read

You're probably familiar with the 1940 collapse of the original Tacoma Narrows Bridge, in Washington state, even if you don't recognize the name: the black-and-white footage of this suspension bridge twisting and buckling dramatically before finally disintegrating has become an icon of engineering failure.

What you're probably less aware of is that the Tacoma Narrows Bridge incident was just the most photogenic of a sequence of significant bridge failures that have occurred at roughly 30-year intervals since 1847, when metal began replacing stone as the material of choice for crossing spans. And it's not just bridges that exhibit cycles consisting of long periods of success punctuated by disaster: spacecraft, nuclear power plants, and other highly engineered artifacts have followed a similar pattern.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

From WinZips to Cat GIFs, Jacob Ziv’s Algorithms Have Powered Decades of Compression

The lossless-compression pioneer received the 2021 IEEE Medal of Honor

11 min read
Horizontal
Photo of Jacob Ziv
Photo: Rami Shlush
Yellow

Lossless data compression seems a bit like a magic trick. Its cousin, lossy compression, is easier to comprehend. Lossy algorithms are used to get music into the popular MP3 format and turn a digital image into a standard JPEG file. They do this by selectively removing bits, taking what scientists know about the way we see and hear to determine which bits we'd least miss. But no one can make the case that the resulting file is a perfect replica of the original.

Not so with lossless data compression. Bits do disappear, making the data file dramatically smaller and thus easier to store and transmit. The important difference is that the bits reappear on command. It's as if the bits are rabbits in a magician's act, disappearing and then reappearing from inside a hat at the wave of a wand.

Keep Reading ↓Show less