The December 2022 issue of IEEE Spectrum is here!

Close bar

Laser on Silicon

A new glass glue opens the path to optical computing

2 min read

Scientists at Intel and at the Univer­sity of California, Santa Barbara, have managed to combine an indium-­phosphide light emitter and a silicon chip to produce a hybrid laser that, years from now, could lead to cheap terabit-per-second connections within and around computers.

Lasers and other optoelectronic devices carry billions of bits through our telecommunications networks every second. But the materials they’re made from, exotic semiconductors such as indium phosphide, and the costly manufacturing techniques involved in their production have kept such gigabit-per-second connections largely confined to long-haul telecommunications. By integrating optoelectronic devices on silicon chips, Intel and other companies, notably Luxtera, in Carlsbad, Calif., and STMicroelectronics, in Geneva, hope to make optoelectronic bandwidths affordable enough for your average notebook computer.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Why Functional Programming Should Be the Future of Software Development

It’s hard to learn, but your code will produce fewer nasty surprises

11 min read
Vertical
A plate of spaghetti made from code
Shira Inbar
DarkBlue1

You’d expectthe longest and most costly phase in the lifecycle of a software product to be the initial development of the system, when all those great features are first imagined and then created. In fact, the hardest part comes later, during the maintenance phase. That’s when programmers pay the price for the shortcuts they took during development.

So why did they take shortcuts? Maybe they didn’t realize that they were cutting any corners. Only when their code was deployed and exercised by a lot of users did its hidden flaws come to light. And maybe the developers were rushed. Time-to-market pressures would almost guarantee that their software will contain more bugs than it would otherwise.

Keep Reading ↓Show less
{"imageShortcodeIds":["31996907"]}