The July 2022 issue of IEEE Spectrum is here!

Close bar

Lane Keeping

Systems for keeping inside the lines are growing up, but they’re still not perfect

2 min read
Lane Keeping
Illustration: mckibillo

Drifting across the desert for a music video: cool. Drifting around a test track in an autonomous car: also cool. Drifting out of your lane on the highway: not cool. Carmakers have been warning drivers not to leave their lanes since 2001, with subtle hints such as audible beeps or vibrating steering wheels. These early systems used cameras to track lane lines painted on the road. A decade ago, Toyota’s first lane-keeping system took over the steering wheel and nudged wayward cars back into line when the driver would not. But because these systems relied on cameras and early image-processing algorithms, they worked only where the lines were clear and in good visibility.

Today’s lane-keeping systems are evolving. The Volkswagen Touareg can track a single lane stripe, and the company claims that the car can track lanes in the dark and in the fog. It manages the feat with a single camera, unlike some systems that use stereoscopic cameras or include information from a radar or other additional sensor.

That choice reveals some sophistication on the part of the image-processing software. Stereo vision would give the car’s processors depth perception to a certain distance, and radar might help it work when the sun is low, blinding the camera. Yet Volkswagen claims its single lane-keeping camera has, enough range for highway driving. It does not, however, work below 65 kilometers per hour (40 miles per hour), which may be a strategic decision to prevent drivers from trying to use the system in more dangerous and complex urban settings. Local roads have less-continuous lane markings than highways and are more likely to have obstructions blocking the car’s field of view and nearby obstacles. Bringing control to lower-speed lane-keeping systems would also require exerting more torque on the steering wheel than highway-speed lane-keeping systems do. The company would not provide further details on how its image-processing system works, but it is a safe bet that it was developed in conjunction with a third-party supplier and customized for Volkswagen.

Image processing is just the start, however: Senior research scientist Eddy Llaneras, at the Virginia Tech Transportation Institute, in Blacksburg, Va., says that a more interesting technical problem is the transition from warning to active control. It also defines the major divide between existing commercial systems. Some are just lane-departure warning systems; the best also nudge the wheel or brakes to help keep a car in its lane. The latter rely on already-existing stability control systems that prevent drivers from overcorrecting, for example, and which are part of today’s lane-keeping assistants.

Lane keeping requires the crucial latitudinal axis of car motion. Werner Huber, BMW’s head of driver assistance and perception, told IEEE Spectrum last year that “the big jump is now to take over control of the car in the longitudinal and latitudinal direction.” For cars that already have advanced cruise control, the temptation to let the car handle both axes is so great that carmakers, including BMW and Volkswagen, deactivate their driver assistance systems if the driver’s hands leave the wheel for more than a few seconds. Someday, the opposite may be true: The car may squawk if the driver tries to take the wheel.

Car Manufacturers

Maker Lane-Departure Warning Lane Keeping

Automotive parts suppliers

The Conversation (0)

Quantum Computing for Dummies

New guide helps beginners run quantum algorithms on IBM’s quantum computers over the cloud

3 min read
An image of the inside of an IBM quantum computer.

Quantum computers may one day rapidly find solutions to problems no regular computer might ever hope to solve, but there are vanishingly few quantum programmers when compared with the number of conventional programmers in the world. Now a new beginner’s guide aims to walk would-be quantum programmers through the implementation of quantum algorithms over the cloud on IBM’s publicly available quantum computers.

Whereas classical computers switch transistors either on or off to symbolize data as ones or zeroes, quantum computers use quantum bits, or “qubits,” which because of the peculiar nature of quantum physics can exist in a state called superposition where they are both 1 and 0 at the same time. This essentially lets each qubit perform two calculations at once. The more qubits are quantum-mechanically linked, or entangled (see our explainer), within a quantum computer, the greater its computational power can grow, in an exponential fashion.

Keep Reading ↓Show less

This Wearable Neck Patch Can Diagnose Concussions

Self-powered sensors convert neck strain into electrical pulses to detect head trauma in athletes

4 min read
image of back of man's head and shoulders with a patch taped to his lower neck; right image is a time lapse image of a man's head extending far forward and back, simulating a case of whiplash

The prototype patch in this research is shown in (a) on the left; on the right (b) is the kind of head rotation that can yield an electrical response from the patch.

Juan Pastrana

Nelson Sepúlveda was sitting in the stands at Spartan Stadium, watching his hometown Michigan State players bash heads with their cross-state football rivals from the University of Michigan, when he had a scientific epiphany.

Perhaps the nanotechnologies he had been working on for years—paper-thin devices known as ferroelectret nanogenerators that convert mechanical energy into electrical energy—could help save these athletes from the ravages of traumatic brain injury.

Keep Reading ↓Show less

Electromagnetic Simulations in Automotive Industry

Learn how an electromagnetic simulator can be applied to various scenarios in the automotive industry

1 min read

This whitepaper shows several examples of how WIPL-D electromagnetic simulator can be applied to various scenarios in the automotive industry: a radar antenna mounted on a car bumper operating at 24 GHz, 40 GHz, and 77 GHz, an EM obstacle detection at 77 GHz, and vehicle-to-vehicle communication at 5.9 GHz. Download this free whitepaper now!