The August 2022 issue of IEEE Spectrum is here!

Close bar

KURMET Bipedal Robot Can Hop Over Obstacles

KURMET uses elastic actuators and a fuzzy control system to bounce up and over objects

2 min read
KURMET Bipedal Robot Can Hop Over Obstacles

KURMET biped robot

Bipedal robots, whether they’re human-sized or not, are generally heavy and unstable and (withfewexceptions) don’t lend themselves to dynamic motions like running and jumping. Researchers from Ohio State University and the University of Notre Dame have developed an experimental biped called KURMET that’s specifically designed for controllable, repetitive jumping*:

That big arm thing isn’t being used to aid in the jumping at all, it’s just there to simplify the system a little bit. Theoretically, it would be possible to do all of this research on an untethered fully three-dimensional robot, but for the purposes of figuring out how to make a robot hop in a stable manner, you only really need to focus on whether it’s tipping forward or backward as it jumps. The “fuzzy” term that you see in the video is referring to how KURMET is controlled: The robot learns how to jump through a training process, not by remembering rules, so there isn’t always a precisely pre-defined action that it’s required to take based on given inputs, which is why it’s called a fuzzy control system.

In the future, the researchers hope to apply evolutionary learning strategies to push KURMET’s performance boundaries, which may or may not include doing flips and playing hopscotch.

The researchers—Yiping Liu, Patrick Wensing, David Orin, and James Schmiedeler—describe their work in a paper, “Fuzzy Controlled Hopping in a Biped Robot,” presented yesterday at the IEEE International Conference on Robotics and Automation (ICRA), in Shanghai.

* Among the most incredible hopping machines ever created are the robots built by Marc Raibert and his team back when he was an MIT professor and directed the MIT Leg Lab. Raibert went on to co-found Boston Dynamics. Some of hisrobots are now on display at the MIT Museum.

The Conversation (0)

How Robots Can Help Us Act and Feel Younger

Toyota’s Gill Pratt on enhancing independence in old age

10 min read
An illustration of a woman making a salad with robotic arms around her holding vegetables and other salad ingredients.
Dan Page
Blue

By 2050, the global population aged 65 or more will be nearly double what it is today. The number of people over the age of 80 will triple, approaching half a billion. Supporting an aging population is a worldwide concern, but this demographic shift is especially pronounced in Japan, where more than a third of Japanese will be 65 or older by midcentury.

Toyota Research Institute (TRI), which was established by Toyota Motor Corp. in 2015 to explore autonomous cars, robotics, and “human amplification technologies,” has also been focusing a significant portion of its research on ways to help older people maintain their health, happiness, and independence as long as possible. While an important goal in itself, improving self-sufficiency for the elderly also reduces the amount of support they need from society more broadly. And without technological help, sustaining this population in an effective and dignified manner will grow increasingly difficult—first in Japan, but globally soon after.

Keep Reading ↓Show less