The December 2022 issue of IEEE Spectrum is here!

Close bar

June 1878: Muybridge Photographs a Galloping Horse

Shutter speed rose from a thousandth of a second in 1878 to a millionth of a billionth of a second in the ’90s. Today, that’s considered slow

3 min read
Photo-illustration of camera lens and running horse.
Photo-illustration: Stuart Bradford

Eadweard Muybridge (1830–1904), an English photographer, established his American fame in 1867 by taking a mobile studio to Yosemite Valley and producing large silver prints of its stunning vistas. Five years later he was hired by Leland Stanford, then the president of the Central Pacific Railroad, formerly the governor of California and latterly the founder of the eponymous university in Palo Alto. Stanford—who was also a horse breeder—challenged Muybridge to settle the old dispute about whether all four of a horse’s legs are off the ground at one time during a gallop.

Muybridge found it difficult to prove the point. In 1872 he took (and then lost) a single image of a trotting horse with all hooves aloft. But he persevered, and his eventual solution was to capture moving objects with cameras capable of a shutter speed as brief as 1/1,000 of a second.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Digging Into the New QD-OLED TVs

Formerly rival technologies have come together in Samsung displays

5 min read
Television screen displaying closeup of crystals

Sony's A95K televisions incorporate Samsung's new QD-OLED display technology.

Televisions and computer monitors with QD-OLED displays are now on store shelves. The image quality is—as expected—impressive, with amazing black levels, wide viewing angles, a broad color gamut, and high brightness. The products include:

All these products use display panels manufactured by Samsung but have their own unique display assembly, operating system, and electronics.

I took apart a 55-inch Samsung S95B to learn just how these new displays are put together (destroying it in the process). I found an extremely thin OLED backplane that generates blue light with an equally thin QD color-converting structure that completes the optical stack. I used a UV light source, a microscope, and a spectrometer to learn a lot about how these displays work.

Keep Reading ↓Show less