The December 2022 issue of IEEE Spectrum is here!

Close bar

Juice From Solar Concentrate

Interdisciplinary team in New York state devises new type of photovoltaic collector

3 min read

Conventional photovoltaic (PV) panels made from silicon to provide electricity to office buildings and homes are still too expensive. Unless they are heavily subsidized, it rarely makes sense to install them where electricity is available from the grid. Taking a new approach to solar conversion, using advanced materials and solar-concentrator technology, a group based at Rensselaer Polytechnic Institute (RPI) in Troy, N.Y., is developing a system that promises to be cheaper and smarter.

Solar-concentrator technology relies on optical methods to focus light on highly efficient photovoltaic materials. A novel way of using such concentrators has been hatched by an interdisciplinary group that includes architects, materials scientists, and electrical and mechanical engineers at Materialab, a research firm that grew out of RPI. The key element in their design is a concentrator with a Fresnel lens, whose concentric grooves focus light on a postage stamp­size cell made of gallium arsenide. The lens forms the flat base of a plastic pyramid, 25 centimeters on a side; the photovoltaic material, made by Spectrolab Inc., in Sylmar, Calif., is at the apex of the pyramid. Developed mainly for space applications, Spectrolab's gallium arsenide multijunction cells have layers of subtly varying PV materials that convert different wavelengths of light into electricity.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less