JPL Designing Spiny-Fingered Grippers for Robotic Drilling on Asteroids

Anchors made of microspines can stick robots to asteroids, comets, and rocks on Mars

2 min read
JPL Designing Spiny-Fingered Grippers for Robotic Drilling on Asteroids
Image: NASA JPL


NASA JPL's Lemur IIB robot hanging from a microspine anchor. Image: NASA/JPL

We’re no strangers to innovative climbing robot research around here, but we don’t often get to see what happens when some of this technology makes that very difficult jump from laboratory curiosity to potential application. Aaron Parness was at Stanford working on climbing robots like Stickybot and Spinybot, and he’s brought Spinybot’s legacy to NASA's Jet Propulsion Laboratory, where they’re working on a microspine adhesion system for sticking robot probes to asteroids.

Back in 2007, the European Space Agency launched the spacecraft Rosetta, a mission to a comet that will arrive in 2014. Rosetta includes a lander that will use a harpoon to stick itself to the surface of the comet, which (while pretty cool) isn’t necessarily an ideal solution, since harpoons aren’t removable. Ideally, you want some system that can reliably anchor a robot to an uneven surface while simultaneously providing enough downforce in microgravity to allow for sample collection, and this is where the microspines come in.

JPL’s microspine anchors are capable of quickly attaching and detaching from a variety of surface types using an actuator with just one degree of freedom. The anchor provides enough force (on surfaces ranging from vertical to inverted) for a percussion drill operating though the anchor to take core samples, and it’s robust enough to survive over a hundred anchoring sequences with a structure that’s designed to be space-durable. Check it out:

Next, JPL will be refining an ankle and foot equipped with this same spine system, the goal being to get one of their limbed robots (Lemur IIB) to be able to climb around vertical and inverted rocky surfaces. This would potentially be ideal for the exploration of asteroids and comets, or for crawling around the walls and ceilings of lava tubes on (say) Mars to collect mineral samples. There’s also talk of somehow applying this system to astronauts, probably for microgravity anchoring, but I can’t help fantasizing about having some microspine gloves and shoes that let me climb straight up the sides of buildings. ‘Course, that’s probably being worked on too, just not in a way that anyone’s allowed to tell us about.

“Demonstrations of Gravity-Independent Mobility and Drilling on Natural Rock Using Microspines,” by Aaron Parness, Matthew Frost, Jonathan P. King, and Nitish Thatte from JPL, Ohio State University, and Rutgers University, was presented yesterday at the 2012 IEEE International Conference on Robotics and Automation in St. Paul, Minn.

[ JPL Robotics Research ]

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less