Japanese Snake Robot Goes Where Humans Can't

This spy bot can move inside air ducts and other narrow places where people can't, or don't want to, go

2 min read
Japanese Snake Robot Goes Where Humans Can't

Japanese robotics company HiBot has unveiled a nimble snake bot capable of moving inside air ducts and other narrow places where people can't, or don't want to, go.

The ACM-R4H robot, designed for remote inspection and surveillance in confined environments, uses small wheels to move but it can slither and undulate and even raise its head like a cobra.

The new robot, which is half a meter long and weighs in at 4.5 kilograms, carries a camera and LEDs on its head for image acquisition and can be fitted with other end-effectors such as mechanical grippers or thermo/infrared vision systems.

Despite its seemingly complex motion capabilities, "the control of the robot is quite simple and doesn't require too much training," says robotics engineer and HiBot cofounder Michele Guarnieri.

"All [degrees of freedom] can be easily controlled by a game-style joystick, including the motion of recovering from an upside-down position."

The company says applications include the inspection of ducts, pipes, and ceilings, as well as remote surveillance and security. Indeed, I bet the CIA and other spy agencies could find some uses for this bot!

Watch the ACM-R4H in action:

[youtube https://www.youtube.com/v/E0oN9yz5pTw?fs=1&hl=en_US expand=1]

HiBot is a spin-off of Tokyo Tech's Hirose-Fukushima Lab, which has brought to life some of the world's most amazing mechanical snakes. The company is transforming some of the research creatures into commercial-grade systems.

The ACM-R4H is smaller than other HiBot snake models, so it can easily enter and zigzag through tight spaces. The head and tail segments can move up and down and the middle joint can turn left and right.

It can negotiate 90 degree corners inside an air duct, for instance, or move inside pipes less than 14 centimeters in diameter. It can also overcome obstacles on its path.

The current version relies on a tether connected to a control unit, which provides communication and power (the control box has a rechargeable battery that lasts for over 3 hours).

The user interface shows images from the camera and a set of data from the robot, including power consumption, temperature, and position of each joint. It also shows a 3D image of the robot's current position that the operator can use for assisting with navigation.

Another tool to help with controlling and planning missions for the robot is a 3D simulator, called V-REP, that HiBot offers with its robots or as a stand-alone program:

[youtube https://www.youtube.com/v/zPvrAiYN9FQ?fs=1&hl=en_US expand=1]

HiBot, which also develops power line inspection robots, says some customers using the robot -- and most won't disclose what they're using for -- had no issues with the tether. "But we can change the robot architecture to have wireless communication," Guarnieri says.

And though the robot is resistant to water splashes, it can be made completely waterproof, he adds. You never know what people will use it for...

Below, some more snake bot videos, just because it's so cool to watch these lifelike machines. The first video shows the ACM-R3H, which is a long wheeled machine -- watch the entertaining demonstration on a Japanese TV show!

The other video shows the ACM-R5H, capable of slithering on the ground and also swimming. Yes, this snake bot swims just like the real thing.

[youtube https://www.youtube.com/v/10aIZcjgSYE?fs=1&hl=en_US expand=1]

[youtube https://www.youtube.com/v/_5PplUmtEvA?fs=1&hl=en_US expand=1]

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less