Is Graphene Really in Need of a Killer App?

The slow commercial development of another nanomaterial appears to be creating some sweaty palms

2 min read
Is Graphene Really in Need of a Killer App?
Photo: Getty Images

The grace period for the eventual commercial success of a nanomaterial, it would seem, is limited. There’s been an abundance of hand wringing in the last few years over the fact that carbon nanotubes have offered us little more to date than advanced composites. Now we are beginning to see that same frustration play out with graphene, to the point where Nature News has published an article questioning whether graphene’s killer app is ever going to come.

It would seem that ten years is the length of time the public expects for a material to go from its first synthesis in the lab to having a huge commercial impact. That was the case for giant magnetoresistance (GMR). That effect was first produced in the lab in 1988 and made it into commercial hard disk drives by 1997.

In this somewhat unfair comparison, it must be understood that GMR-based hard drives did not need to completely uproot an entire industry to succeed. For graphene, a main target has been silicon CMOS, an entrenched technology if ever there was one. But silicon CMOS will not take us into the future indefinitely. You need no more confirmation of this than the money that is being invested by the tech giants to find a replacement.

We have passed the decade mark since graphene was first synthesized and the public is getting restless, especially about what its commercial potential actually is and how to make profitable investments in the technology.

During this past decade, we have seen the first flushes of excitement about graphene occur in electronics, where it seemed to offer a way around the problems with carbon nanotubes of getting them where you wanted and interconnecting them. But that excitement needed to be tempered with the vexing issue of graphene lacking a band gap. While a band gap has been successfully engineered into graphene, it doesn’t appear that digital logic applications are the path of least resistance for the material.

Articles like the one in Nature make all the valid points about graphene production outstripping demand, something we also saw befall carbon nanotubes. However, maybe we need not look any further for a killer app, because of the likelihood that silicon’s days are numbered. In the meantime, we seem to be finding critical applications for graphene, and other nanomaterials, that we didn’t initially consider, such as water purification membranesenergy storage, and energy generation applications.

The Conversation (0)

3 Ways 3D Chip Tech Is Upending Computing

AMD, Graphcore, and Intel show why the industry’s leading edge is going vertical

8 min read
Vertical
A stack of 3 images.  One of a chip, another is a group of chips and a single grey chip.
Intel; Graphcore; AMD
DarkBlue1

A crop of high-performance processors is showing that the new direction for continuing Moore’s Law is all about up. Each generation of processor needs to perform better than the last, and, at its most basic, that means integrating more logic onto the silicon. But there are two problems: One is that our ability to shrink transistors and the logic and memory blocks they make up is slowing down. The other is that chips have reached their size limits. Photolithography tools can pattern only an area of about 850 square millimeters, which is about the size of a top-of-the-line Nvidia GPU.

For a few years now, developers of systems-on-chips have begun to break up their ever-larger designs into smaller chiplets and link them together inside the same package to effectively increase the silicon area, among other advantages. In CPUs, these links have mostly been so-called 2.5D, where the chiplets are set beside each other and connected using short, dense interconnects. Momentum for this type of integration will likely only grow now that most of the major manufacturers have agreed on a 2.5D chiplet-to-chiplet communications standard.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}