iRobot Scooba 230: How It Works

iRobot shrunk the Scooba. How did they do it?

2 min read
iRobot Scooba 230: How It Works

I would love to have a Scooba, iRobot's floor-washing robot, to keep my kitchen and bathroom shining. But for my New York City-sized dwelling (read: tiny cramped apartment), the rotund robot is an overkill -- it could probably clean the entire bathroom floor just by spinning in place.

It appears that iRobot heard the same complaint from many people and decided to shrink the Scooba. The new Scooba 230, unveiled at CES, is about the same height but only half the diameter of the original Scooba 300 series [see photo above]. At 16 centimeters in diameter (6.5 inches) and 9 centimeters tall (3.5 inches), the new Scooba can get into small areas such as that dreaded space around the toilet.

Like the original models, the shrunken Scooba uses a three-stage cleaning approach: first, it deposits water or a cleaning solution on the floor; then it uses scrubbing brushes to lose dirt and grime; finally, a squeegee vacuum removes the dirty water. The Scooba 230 is designed to clean up to 14 square meters (150 square feet) of tile, linoleum, or sealed hardwood floors in a single session, while the larger Scooba units can clean from 23 to 80 square meters (250 to 850 square feet), depending on the model. Watch the video below to see how the Scooba 230 works:

[youtube //www.youtube.com/v/Pu4EsSqNNks?fs=1&hl=en_US&hd=1 expand=1]

And how did iRobot engineers manage to shrink the robot and still allow it to clean a sizable area?

irobot scooba 230 water management system

The trick is the robot uses the same internal volume to store both clean and dirty water. The two are separated by a flexible membrane and never get mixed; as the clean water goes out, the membrane makes more room for the dirty water coming in from the squeegee vacuum [see illustration].

In terms of navigation software, the Scooba uses the same approach as the Roomba to make sure it covers an entire area, following walls, going around obstacles, and driving over the same spot multiple times -- and sensors below the front bumper prevent it from falling down stairs and other drop-offs.

The new Scooba 230 will be available this spring in the United States and will cost $300. We plan to post an in-depth review soon.

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

This article is part of our special report on AI, “The Great AI Reckoning.

"I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less