The July 2022 issue of IEEE Spectrum is here!

Close bar

Iran Trumpets Its Nanotechnology Behind a Veil

It's hard to know whether recent claims about Iran's nanotechnology achievements are hype or real without greater transparency

2 min read
Iran Trumpets Its Nanotechnology Behind a Veil

This week Iran will be hosting its fourth annual international nanotechnology festival, Iran Nano 2011, and the PR materials have been churned out fast and furious leading up to the event.

Just about everything that has been announced is simultaneously intriguing and baffling. For example, earlier this week I read that the Secretary of Iran's Nanotechnology Initiative Council, Saeed Sarkar, was claiming that Iran was ranked 12th in the world for production of nanoscience.

Now I have no reason not to believe that claim, mainly because I am not sure I could name off the top of my head who is ranked 1 through 11, but more important, I am not sure what it means.

Could it be the production of scientific papers with reference to nanotechnology? We now know that the pursuit of this metric is often on a slippery slope. Or could it be funding? Hard to say on that one; Iran’s expenditures on nanotechnology are not as well known as some other countries. And translating funding into actual impact is probably more critical than just the amount allocated.

The main problem in ranking Iran’s place in the nanotechnology hierarchy is that of transparency: We just don’t know that much.

One of the few people I know who has visited Iran with the purpose of working on nanotechnology is Tim Harper, who offered this about Iran during an interview with Frogheart back in July:

“Iran is a different case, and it’s a place I have visited several times to discuss nanotechnologies. While the world may have some issues with the Iranian government, the scientists and business people I deal with are just like the rest of us. Iran has some great science going on, and the U.S. embargo has meant that they have had to be quite ingenious to get access to even basic instrumentation such as electron microscopes. However, there’s a large domestic market, and the Iranians are manufacturing everything from scientific instruments to nanomaterials. When the political issues are solved, I think a few people will be surprised by the level of sophistication of Iranian nanoscience.”

I suppose Harper’s view is all I really have to prevent me from considering with skepticism recent claims that researchers in Iran have developed a form of the cancer drug doxorubicin that has eliminated many of the drug’s side effects. The new formulation may be a great breakthrough, but I am not sure whether its presentation as a “cure for cancer” is just your typical run-of-the-mill hype or state-sponsored propaganda.

In either case, I wish the Iranians would avoid that kind of announcement, especially when their entire nanotechnology enterprise remains a mystery for many. Sanctions or no, science needs transparency to progress, both within and outside Iran.

The Conversation (0)

3 Ways 3D Chip Tech Is Upending Computing

AMD, Graphcore, and Intel show why the industry’s leading edge is going vertical

8 min read
Vertical
A stack of 3 images.  One of a chip, another is a group of chips and a single grey chip.
Intel; Graphcore; AMD
DarkBlue1

A crop of high-performance processors is showing that the new direction for continuing Moore’s Law is all about up. Each generation of processor needs to perform better than the last, and, at its most basic, that means integrating more logic onto the silicon. But there are two problems: One is that our ability to shrink transistors and the logic and memory blocks they make up is slowing down. The other is that chips have reached their size limits. Photolithography tools can pattern only an area of about 850 square millimeters, which is about the size of a top-of-the-line Nvidia GPU.

For a few years now, developers of systems-on-chips have begun to break up their ever-larger designs into smaller chiplets and link them together inside the same package to effectively increase the silicon area, among other advantages. In CPUs, these links have mostly been so-called 2.5D, where the chiplets are set beside each other and connected using short, dense interconnects. Momentum for this type of integration will likely only grow now that most of the major manufacturers have agreed on a 2.5D chiplet-to-chiplet communications standard.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}