Ion Teleportation Scheme Could Scale Up Quantum Computers

Scientists have teleported the quantum state of one trapped ion onto another a meter away

3 min read

23 January 2009—A team of scientists is announcing today in the journal Science that in one of those bizarre demonstrations of quantum mechanics it has managed to teleport the quantum state of one ion onto another across a distance of a meter. Though we’re accustomed to thinking of the Star Trek version of teleportation, what physicists call teleportation is the exact mapping of one particle’s quantum characteristics to another distant particle. That matters because future quantum computers and quantum cryptography networks need some way of storing data and moving it around.

In the past decade, physicists have shown that teleportation is possible with magnetic fields, photons, and even atoms. What makes the new results—by Christopher Monroe of the University of Maryland and his colleagues—interesting is that the team uses a hybrid approach involving both atoms and photons that fits well with quantum information networks and quantum computers. Theoretically, Monroe says, the technique they have invented can be extended to distances as great as thousands of kilometers, although all they have demonstrated so far is one meter.

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The Future of Deep Learning Is Photonic

Computing with light could slash the energy needs of neural networks

10 min read

This computer rendering depicts the pattern on a photonic chip that the author and his colleagues have devised for performing neural-network calculations using light.

Alexander Sludds

Think of the many tasks to which computers are being applied that in the not-so-distant past required human intuition. Computers routinely identify objects in images, transcribe speech, translate between languages, diagnose medical conditions, play complex games, and drive cars.

The technique that has empowered these stunning developments is called deep learning, a term that refers to mathematical models known as artificial neural networks. Deep learning is a subfield of machine learning, a branch of computer science based on fitting complex models to data.

Keep Reading ↓ Show less