Inventors Claim Graphene Hybrid Could Revolutionize Electronics Industry

Can a material that outperforms other carbon-based transparent conductors change the electronics industry?

2 min read
Inventors Claim Graphene Hybrid Could Revolutionize Electronics Industry

The latest flavor of graphene is something the researchers who invented it are calling GraphExeter. While the name itself is not big on originality—just combining the words graphene with Exeter (the name of the University where the researchers are affiliated)—it does seem to have some superlative characteristics.

The researchers, led by University of Exeter Engineer Monica Craciun, claim that the material is the most transparent, lightweight and flexible material ever for conducting electricity. GraphExeter is actually two layers of graphene sandwiching molecules of ferric chloride. The ferric chloride increases the electrical conductivity of the graphene without compromising its transparency.

“GraphExeter could revolutionize the electronics industry,” says Craciun in the university press release. “It outperforms any other carbon-based transparent conductor used in electronics and could be used for a range of applications, from solar panels to ‘smart’ teeshirts. We are very excited about the potential of this material and look forward to seeing where it can take the electronics industry in the future.”

Craciun and her colleagues initially published their work in the Wiley journal Advanced Materials where the description is not quite as bold as the university press release. Nonetheless the abstract does say that GraphExeter “outperforms the current limit of transparent conductors such as indium tin oxide, carbon-nanotube films, and doped graphene materials.”

It seems that the material’s capability as a superior transparent conductor makes it an ideal candidate for optoelectronic devices. So this latest news represents quite a recent run for graphene in optoelectronics applications following IBM’s announcement earlier in the week.

The researchers say that potential applications include photovoltaics and wearable electronics among many others. An ambitious list to say the least, but the researchers do point out that looming bottleneck of using indium tin oxide (ITO) for transparent conducting electrodes provides a strong motivation to find an alternative.

Whether a shortage of ITO will be enough to get the electronics industry to adopt a material that has just been invented remains to be seen. So I think we will see some evolutions to this material’s development before we see any revolution occur to the electronics industry.

The Conversation (0)

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.

Avicena

If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less