Into Deep Ice

What does the future hold for Earth’s ice? A group of British researchers seeks answers in the bowels of a glacier

18 min read
Photo of team of engineers and glaciologists from the Univ. of Southampton, England, trekking on a glacier in southwestern Norway.

A Cool Mission: A team of engineers and glaciologists (center) from the University of Southampton, in England, embeds capsules stuffed with environmental sensors deep within the Briksdalsbreen, a glacier in southwestern Norway that is particularly sensitive to climate variations.

Erico Guizzo

“Follow me," Kirk Martinez says as he leaps from boulder to boulder, his shoulder-length brown hair trailing behind him. I try to keep pace, striding along the trail, a bitter wind against my face. We stop at the base of a wall of rock that rises more than a thousand meters. From behind that mountain, what looks like a huge river of snow snakes its way to where we stand. But as we move closer, one thing becomes clear: this enormous swath of bluish white is not snow—it's ice.

It's a bright August morning in the tiny bucolic town of Olden, in southwestern Norway, and I find myself about to clamber up the largest mass of frozen water I've ever seen. It's called the Briksdalsbreen. Breen, I am told, is Norwegian for glacier, and Briksdalen is the picturesque valley where it resides. Although it holds more than a billion tons of rock-hard ice—enough to fill up a thousand Empire State buildings—Briksdalsbreen is just a small arm of a much vaster glacier named the Jostedalsbreen, which, boasting an area of almost 500 square kilometers, is the largest ice field in continental Europe.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Engineers Are Working on a Solar Microgrid to Outlast Lunar Nights

Future lunar bases will need power for mining and astronaut survival

4 min read
A rendering of a lunar base. In the foreground are rows of solar panels and behind them are two astronauts standing in front of a glass dome with plants inside.
P. Carril/ESA

The next time humans land on the moon, they intend to stay awhile. For the Artemis program, NASA and its collaborators want to build a sustained presence on the moon, which includes setting up a base where astronauts can live and work.

One of the crucial elements for a functioning lunar base is a power supply. Sandia National Laboratories, a research and development lab that specializes in building microgrids for military bases, is teaming up with NASA to design one that will work on the moon.

Keep Reading ↓ Show less

Trilobite-Inspired Camera Boasts Huge Depth of Field

New camera relies on “metalenses” that could be fabricated using a standard CMOS foundry

3 min read
Black and white image showing different white box shapes in rows

Scanning electron microscope image of the titanium oxide nanopillars that make up the metalens. The scale is 500 nanometers (nm).


Inspired by the eyes of extinct trilobites, researchers have created a miniature camera with a record-setting depth of field—the distance over which a camera can produce sharp images in a single photo. Their new study reveals that with the aid of artificial intelligence, their device can simultaneously image objects as near as 3 centimeters and as far away as 1.7 kilometers.

Five hundred million years ago, the oceans teemed with horseshoe-crab-like trilobites. Among the most successful of all early animals, these armored invertebrates lived on Earth for roughly 270 million years before going extinct.

Keep Reading ↓ Show less

Harnessing the Power of Innovation Intelligence

Through case studies and data visualizations, this webinar will show you how to leverage IP and scientific data analytics to identify emerging business opportunities

1 min read

Business and R&D leaders have to make consequential strategic decisions every day in a global marketplace that continues to get more interconnected and complex. Luckily, the job can be more manageable and efficient by leveraging IP and scientific data analytics. Register for this free webinar now!

Join us for the webinar, Harnessing the power of innovation intelligence, to hear Clarivate experts discuss how analyzing IP data, together with scientific content and industry-specific data, can provide organization-wide situational awareness and reveal valuable business insights.

Keep Reading ↓ Show less