The July 2022 issue of IEEE Spectrum is here!

Close bar

Interview: iRobot's AVA Tech Demonstrator

We get all the details on iRobot's new "AVA" tech demonstrator at CES 2011

2 min read
Interview: iRobot's AVA Tech Demonstrator

With all of the new competition in the consumer robotics field, it’s about time for iRobot to show that they’re still capable of innovating new and exciting things. AVA, their technology demonstrator, definitely fits into the new and exciting category.

AVA is short for ‘Avatar,’ although iRobot was careful not to call it a telepresence robot so as not to restrict perceptions of what it's capable of. AVA is capable of fully autonomous navigation, relying on a Kinect-style depth sensing camera, laser rangefinders, inertial movement sensors, ultrasonic sensors, and (as a last resort) bump sensors. We got a run-down a few days ago at CES, check it out:

All of the sensor data crunching is taken care of by a heavyweight on-board computer, but the brains of the operation is really whatever AVA happens to be wearing for a head, in this case, a tablet PC. This makes it easy to develop applications to control the robot, which is a concept not unlike the iRobot Create: the building a robot part is done for you, leaving you to focus on getting said robot to do cool stuff.

There are also a bunch of interesting ways to interact with AVA. You’ve got the tablet of course, if you want to do things the hard way. A second Kinect camera on the bot can detect people and recognize gestures, and an array of microphones can detect and interpret voice commands. Finally, AVA’s round ‘collar’ piece has touch sensors all the way around, offering an intuitive way to steer AVA around.

While iRobot wouldn’t speculate on what’s coming next for AVA (disappointing), telepresence is an obvious first application. AVA also has a bunch of expansion ports that you can attach stuff to, which obviously makes me think manipulators. Personally, I’m hoping that now that AVA is out in the open, iRobot will keep us updated with some of the new ideas that they’re playing around with.

[ iRobot ]

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

“I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

This article is part of our special report on AI, “The Great AI Reckoning.”

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓Show less